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ABSTRACT 
Real time flood forecasting is one of the most effective non- structural measures for flood management. In this 
study, Ensemble Kalman Filter (EnKF) is used with Probability Distributed Moisture model (PDM) to forecast 
flood events over Nzoia sub-basin. The performance of four variations of EnKF (state updating, parameter 
updating, dual (state parameter) and dual (parameter-state) updating) were evaluated using the Root Mean 
Square (RMSE) and Coefficient of Efficiency (CoE) for 1, 3, 6, 9 and 12-hour lead time forecasts. In 1EE01 
gauging station, RMSE and CoE values was 30m3/s and 0.70 while 1EF01 station had RMSE and CoE values of 
50m3/s and 0.82 respectively. For the state variables, standard deviation of 1.1, 0.32, 0.21 and 0.05 were found 
for recharge, surface storage, groundwater storage and storage respectively while for the PDM parameters, 
standard deviation of 4.0, 0.2 and 0.2 were found for maximum store capacity, exponent of recharge function and 
ground recharge time respectively. Parameter updating performed better in terms of RMSE and CoE and thus 
potential of improving flood forecasting to enable management of flood related risk on real time basis over the 
sub-basin.  
Key Words: Discharge, rainfall, Ensemble Kalman Filter, flood forecasting, rainfall-runoff model. 
_____________________________________________________________________________________ 
 
1.0 INTRODUCTION 
Water availability and its use form fundamental 
components for economic, social and cultural 
development in Kenya [1]. Kenya’s record of 
flood disasters indicates the worst floods that 
were recorded in 1961-62 and 1997-98 are 
associated with a dipole reversal in atmospheric 
circulation (Indian Ocean Dipole) and Indian 
Ocean sea surface temperatures [2]. This event 
caused widespread flooding, rapid and prolonged 
increases in the levels of many lakes in East 
Africa and significant economic disruption [3]. 
Notably, building larger structures alone to cope 
up with the extremely low probability flood 
events cannot completely circumvent risk of 
flood hazards. 
 
Flood forecasting with sufficient lead-time could be 
used as nonstructural measure for flood hazard 
mitigation and for minimizing flood related losses. 
There exists a number of ways to quantify 
uncertainty in real-time flood forecasting such as 
sequential data assimilation techniques that provide 
a means of explicitly taking account of input, model 
and output uncertainties. One of the earliest data 

assimilation techniques is the Kalman filter 
developed for linear systems [4]. For use with 
nonlinear models, it was later extended resulting in 
the extended Kalman filter (EKF). These two filters 
have been widely used in hydrologic modeling [4]. 
If the nonlinearities in the model are strong, the 
linearization becomes very inaccurate. This has led 
to the development of the EnKF where the errors are 
allowed to evolve with the nonlinear model 
equations by performing an ensemble of model runs 
[5]. Feasibility of applying EnKF to real-time flood 
forecasting by comparing it with EKF for the Sobek 
River in Netherlands showed that the EnKF gave 
similar results to those of the already operating EKF 
model with ten or more ensemble members [6].  
 
Real time flood forecasting systems are aimed at 
issuing the flood warning in real time in order to 
prepare the evacuation plan during the flood. The 
effectiveness of real time flood forecasting systems 
in reducing flood damage would depend upon 
among other factors, on how accurately the 
estimation of future stages or flow of incoming 
flood and its time sequence at selected points along 
the river could be predicted. Therefore, this study 
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aims at evaluating the performance of EnKF in real 
time flood forecasting of River Nzoia in Lower 
Nzoia sub-basin. 
 
2.0 MATERIALS AND METHODS 
The study area is the Nzoia River located at 
latitudes 34o–36oE and longitudes 0o–1.25oN in East 
Africa [7]. It drains into the Lake Victoria and Nile 
river basins. Nzoia, a sub-basin of Lake Victoria, is 
chosen as the study area because of its regional 
importance as it is a flood-prone and also one of the 
major tributaries to Lake Victoria as shown in 
Figure 1 [7]. The Nzoia sub-basin covers 
approximately 12 900 km2 of area with an elevation 
ranging between 1100 to 3000m. The Nzoia River 
originates in the southern part of the Mt. Elgon and 
Western slopes of Cherangani Hills [8] 
 
Rainfall and discharge data were used as shown in 
Table 1. Daily rainfall records were obtained from 
the Kenya Meteorological Department for the 
period 1980-2010 while daily discharge records for 
the year 2003 were sourced from Kenya’s Water 
Resources Management Authority in order to cover 
the flood event of April May 2003 used for real time 
flood forecasting. 
 
The Probability Distributed Moisture (PDM) model 
is a conceptual rainfall-runoff model which 
transforms rainfall and evaporation data to flow at 
the catchment outlet [9]. The runoff production at a 
point in the catchment is controlled by the 
absorption capacity of the soil (treated together with 
canopy interception and surface detention) to take 
up water. In the PDM model formulation, the 
surface runoff is calculated from the previous values 
of the surface runoff and net rainfall. Several studies 
[4, 10] have shown that Ensemble Kalman filter 
(EnKF) and its four variations can be used as a sub-
optimal estimator, where the error statistics are 
predicted by using Monte Carlo integration 
methods. 
 
In this study, error variances of input rainfall and 
output discharge are specified priori and not 
updated. Further, a preliminary estimate of input 
error term [6] was used while a preliminary estimate 

of discharge measurement  error was  assumed  to  
be  equal  to 0.1  times  the  standard  deviation  of  
the measured discharge [12]. A flood event of 
April–May 2003 [1] was used to evaluate the 
performance of EnKF over River Nzoia sub-basin.  
For  this  flooding  event,  stream  flow  data  from  
the  gauging  stations selected and corresponding 
rainfall data from stations located in the River Nzoia 
sub-basin were identified. The PDM model was 
calibrated for the event data using the Shuffled 
Complex Evolutionary (SCE) algorithm. Based on 
the calibrated model parameters, the PDM model 
was then run using observed daily rainfall data until 
the beginning of May 2003. Hourly data from 
TRMM satellite was then used to run the model for 
River Nzoia sub-basin.  The study assumed that the 
variance of noises introduced to the input forcing 
and flow measurements were proportional to their 
magnitudes based on uncertainties in input and 
output terms as measured [11, 12]. The EnKF and 
its four variations were then applied to the flood 
event. The four variations of EnKF considered in 
this study were the state updating, parameter 
updating, dual (state-parameter) and dual 
(parameter-state) updating. The probability 
distributed  moisture  (PDM)  model  was  used  to  
transform  the  rainfall  to  discharge. The resulting 
discharge from the PDM model was updated using 
the EnKF 
 
Using EnKF with state updating, four storage in the 
PDM model which included recharge (S1), surface 
storage (S2), groundwater storage (S3) and storage 
(St) were considered as state variables and were 
updated sequentially as new measurements became 
available. The standard deviation of the four state 
variables was selected by sensitivity analysis. To 
obtain the lead time and peak forecasts, a perfect 
knowledge of the future rainfall was assumed to 
avoid the error in forecasting rainfall. In reality, the 
uncertainty in the rainfall forecasts adds to the other 
uncertainties in the forecasting process. The time 
interval used for the flood hydrograph was one 
hour. Forecasts were made at 1-, 3-, 6-, 9- and 12-
hour lead times at every forecast time. At each 
forecast time, the magnitude of the forecast peak 
was also obtained. For EnKF, with parameter 
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updating, three of the PDM model parameters, 
namely, maximum store capacity (Cmax), exponent of 
recharge function (bg) and ground recharge time (k2) 
were updated. These are the most sensitive 
parameters of the PDM model. The updating 
procedure was initialized by defining prior 
uncertainty range associated with the three 
parameters. As the initial ensemble of parameters 
had to be specified, these three parameters were 
randomly sampled from a normal distribution with 
the standard deviations and obtained by sensitivity 
analysis. For dual EnKF, state parameter updating 
was considered where both state variables and 
parameters were sequentially updated. The 
adequacy of the EnKF was evaluated by using the 
root mean square (RMSE) and the coefficient of 
efficiency for 1, 3, 6, 9 and 12 hour forecasts. The 
RMSE is defined by equation (1) as 

 

Where Qf,L(i) is the forecasted discharge for lead 
time L for forecast i and  Qobs corresponding 
observed discharge. The coefficient of efficiency 
(CoE) of a model is defined as the proportion of the 
variance of the observed discharge accounted by the 
model [13]: 

 
 Where S is the simulated model discharge 
while  is observed discharge. In addition, the 
error in the peak discharge magnitude and the 
timing were also used in the evaluation. To make 
objective comparison of the performance of EnKF 
with different options, a perfect knowledge of future 
observed rainfall was assumed in obtaining lead 
time forecasts and peak discharges. Computations 
were determined only for the period where the 
observed discharge was greater than 30m3/s to avoid 
the small discharge values which are not significant 
in flood forecasting [4]. 

___________________________________________________________________________________ 

 
Figure 1: Map of Nzoia river sub-basin in Lake Victoria region showing the location of Lower Nzoia 
sub-basin [7] 
___________________________________________________________________________________ 
 

Lower Nzoia  
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Table 1: Selected rainfall stations  
 Station Name Coordinates Record Period Record Length (Years) 
1. Kitale meteorological station 1.01oN 35.0oE 1980-2010 31 
2. Bunyala irrigation scheme 1.30oS 36.8oE 1980-2010 31 
 
 
Table 2: Selected River Gauging Stations (RGS) 
 Station ID Location Sub-basin Name Period Record Length (Years) 
1. 1EE01 0.18 N, 34.22 E Nzoia 2003 1 
2. 1EF01 0.12 N, 34.09 E Nzoia 2003 1 

3.0 RESULTS AND DISCUSSION 
3.1 Model Calibration 
Results of calibration of PDM model based on daily and hourly rainfall data are presented in Table 3. 
Table 4 and 5 shows the standard deviation of the four state variables and the standard deviation and 
range of PDM parameters updated.  
 
 
Table 3: The calibrated parameters of the PDM model  
Parameter Value Parameter Value 
Cmax 436 K1 1 
Cmin 0 K2 4.9 
b 1.42 Kg 900 
be 5.0 St 3.28 
bg 1.26 td 0 
Kb 20   
 
Table 4: State variable standard deviations 
State variable S1 S2 S3 St 
Standard deviation 1.1 0.32 0.21 0.05 
 
Table 5: Standard deviation and range of the PDM parameters updated 
Parameter Minimum Maximum Standard deviation 
Cmax 90 500 4.0 
bg 0.5 2.5 0.2 
k2 8.0 16.0 0.2 
  
Based on the calibrated parameters in table 2 RMSE and CoE values in 1EE01 gauging station, was 30m3/s and 
0.70 while 1EF01 station had RMSE and CoE values of 50m3/s and 0.82 respectively. This indicated that the 
PBM model output (discharge) corresponded to the observed discharge data over River Nzoia sub-basin.  
 
3.2 Model Evaluation 
For each EnKF method applied to Nzoia River, the average values of the RMSE and CoE for the selected flood 
event with a lead times of 1, 3, 6, 9, 12 hours were presented in Table 6 and 7 respectively. The 1-h, 3-h, 6-h, 9-h 
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and 12-h lead time forecasts with 95% forecast limits are shown in Figure 2 to Figure 4 for the flood event of 
may 2003 
 
Table 6: Comparison of RMSE 
 
Variations of EnKF 

Lead time (hours) 
1 3 6 9 12 

State 9.2 12.2 16.1 18.7 20.1 
Parameter 6.5 9.2 12.6 15.2 17.0 
State-Parameter 7.6 10.7 14.5 16.9 18.3 
Parameter-State 10.1 13.1 16.8 19.3 20.6 
 
Table 7: Comparison of the Coefficient of efficiency 
Variations of EnKF Lead time (h) 

1 3 6 9 12 
State 0.80 0.74 0.65 0.57 0.53 
Parameter 0.82 0.80 0.73 0.67 0.62 
State-Parameter 0.83 0.78 0.69 0.63 0.59 
Parameter-State 0.79 0.73 0.63 0.56 0.52 

   
Figure 2: Comparison of flood forecast for 1-h and 3-h hr lead time 
  

   
Figure 3: Comparison of flood forecast for 6-h and 9-h lead time  
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Figure 4: Comparison of flood forecast for 12-h lead times  
___________________________________________________________________________________ 
 
 
It can be seen from Table 6 that the EnKF 
with parameter updating gave the smallest 
RMSE for all the lead time. Similarly, it 
gave the largest coefficient of efficiency for 
all the lead time (Table 7). Table 6 and 
Table 7 shows superior performance of 
parameter updating over the other 
variations. This indicated that the EnKF 
with parameter updating performed better 
compared to the other three variations. 
Based on Figure 2 to Figure 4, the study 
showed that the quality of the forecasts 
deteriorated with increase in the lead time 
from 1-h to 12-h. 
 

4.0 CONCLUSION  
 The ability of the EnKF with the PDM 
model to forecast discharge was evaluated 
by using flood event of April-May 2003 in 
the Nzoia River sub-basin. Four variations 
of the EnKF, namely, the state, parameter 
and dual (state-parameter and parameter-
state) were considered. Based on the 
calibrated parameters, RMSE and CoE 
values in 1EE01 and 1EF01 gauge stations 
indicated that the PDM model output 
(discharge) corresponded to the observed 
discharge data for Nzoia River Basin. A 
standard deviation of 1.1, 0.32, 0.21 and 
0.05 were found for the state variables S1, 

S2, S3 and St respectively while a standard 

deviation of 4.0, 0.2 and 0.2 were found for 
the PDM updated parameters which 
included Cmax, bg and k2 respectively. The 
study noted EnKF with parameter updating 
gave the smallest RMSE for all the lead 
time. Likewise, it gave the largest 
coefficient of efficiency for all the lead 
time. This indicate that the EnKF with 
parameter updating performed better 
compared to the other three variations and 
thus could be used for real time flood 
forecasting to manage flood risk over the 
sub-basin. 
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