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 This study aimed at predicting the pollution load of Lead, Copper, and Cadmium 
in river Sosiani using the Artificial Neural Network, based on parameters, 
Physico-chemical; turbidity, Electrical Conductivity, and Chemical Oxygen 
Demand, and Chemical; fluoride and phosphate. The Atomic Absorption 
Spectrophotometer, Ultra Violet-Visible Spectrophotometer, Ion Selective 
electrodes and Redox-titration methods were used for  analysis in from six 
sample sites, S1 to S6. A total of 78 datasets from the experimental results were 
used and divided into three, training 60%, testing 20%, and holdout 20%. The 
model used the IBM SPSS statistics 20 software, and performances evaluated 
using Pearson’s correlation coefficient. The mean pollution loads from 
laboratory analysis were 0.615±0.293, 0.037±0.027, and 0.096±0.030 mg/L while 
those from ANN were 0.615±0.293, 0.032±0.023, and 0.073±0.033 mg/L for Pb, 
Cu, and Cd, respectively. The correlation coefficients between the ANN and the 
observed values for Pb, Cu, and Cd were 0.9999, 0.9910, and 0.9965, 
respectively. The ANN was able to predict the pollution load of Pb, Cu, and Cd in 
the river.  
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ISSN 2313-3317  
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1. Introduction 

Pollutants emanating from industries often deposit in water resources such as rivers, lakes, and oceans. 
Pollution impacts of a water resource depend on the pollution quantity and assimilative capacity of the 
water body [1, 2]. Many water quality parameters have been implicated to potentially affect the 
availability of metal cations in a water resource. For example, specific adsorption, precipitation, and 
complexation greatly affect the distribution of the metal ions in a water body. An artificial neural 
network is an interconnected assembly of simple processing units or nodes, whose functionality 
simulates the animal neuron. The processing ability of an ANN is in the inter-unit connection strengths, 
or weights, obtained by learning from a set of training patterns [3]. The neurons do not require any 
prior structural knowledge of the relationships that exist between variables and the processes to be 
modeled [4]. Approximately 1.8 million children under 5 years die due to waterborne diseases.  The  
trace  elements ‘ concentration in a water resource above WHO recommended limits  are a health risk 
to consumers downstream[2].  
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The quality of a water resource varies from time to time and therefore, the continuous monitoring of 
the quality parameters is necessary. Experimental analysis of water quality in laboratories of water 
resources is time-consuming and expensive. A similar study reported concentrations of lead and 
cadmium in the Sosiani River that exceeded the WHO standards [2].  It is on this background that this 
study explores the potential of an artificial neural network to predict concentrations of select pollutants 
in a water resource using physico-chemical and chemical parameters’ assessment. For the assessment 
of water resources, it is essential to establish an evaluation system of water quality parameters [5]. 
Long-term exposure to low concentrations of lead, copper, and cadmium can cause many adverse 
health effects. There are many laboratory analytical methods used to determine trace element 
concentrations in water resources like atomic absorption spectrometry and Ultraviolet-Visible 
spectrophotometric methods [6].  

In a study carried out in Iran, SO4, Cl, and TDS were used as input variables to predict the concentrations 
of some trace elements; Fe, Mn, Pb, and Zn. The findings showed that Multi-output Adaptive Neural 
Inference System-MANFIS model had the potential to estimate the distribution of the trace elements 
in groundwater with a high degree of accuracy and robustness [7]. A similar study by [8] used Artificial 
Neural Network optimized by the Imperialist Competitive Algorithm-ANN-ICA model to predict the 
concentrations of trace elements in groundwater resources and reported good model performance. 
In the prediction of metal cations in Moroccan aquatic sediments, the multi-layer perceptron neuron 
networks performed better than the multiple linear regressions [9].  A study by [10] used physico-
chemical parameters EC, COD, and BOD for the evaluation of wastewater quality. However, this study 
used the physico-chemical and chemical parameters to predict pollution loads of Pb, Cu, and Cd in the 
water resource.  

The COD, BOD, and TSS were used as input variables in the ANN to predict the performance of the 
wastewater treatment plant in Alexandria, Egypt, and reported a correlation coefficient of 0.90 
between observed and predicted output variables.  The artificial neural network in the study proved to 
be a better tool for simulating, controlling, and predicting the performance of wastewater treatment 
plants-WWTP [11].  In this study, the pollution load of a surface water resource, river Sosiani that cuts 
across Eldoret municipality in northern Kenya, was evaluated using Artificial Neural Network. This study 
used a double-layered ANN model in the prediction of pollution load of Pb, Cu, and Cd in the surface 
water. The successful application of the ANN in the prediction of pollution loads of a water resource 
will not only improve rapid assessment but also reduce the cost of water quality monitoring of river 
Sosiani. The findings of the present study will be of interest to environmentalists, water resources 
conservationists, water service providers, and policy-makers. 

1.1 Artificial neural networks 

Artificial intelligence has now come of age, with the current powerful computers and internet 
connectivity as well as computer programmings culminating into the internet of things-IoT [12]. A given 
unit or node is a simplified model of a real neuron that sends off a new signal if it receives a sufficiently 
strong input signal from the other nodes to which it is connected. It trains the algorithm and predicts 
the error between actual output and simulated output from ANN and propagates backward through 
the network. During the training process, it reduces the errors between each successive layer and 
continues until the pre-specified error limits [13]. Among the developed neural network models are 
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multilayer perceptron, MLP, and radial basis function, RBF, networks [4]. Neural networks differ in their 
learning processes and architecture. Feed-forward ANN allows signals to travel one way [14].  
The artificial neural network training is through supervised learning in which the network is given input 
and marching output patterns. The ANN learns to perform a particular task by adjusting the values of 
the connections between elements through a back-propagation algorithm until the network output 
matches the target variable so that the network can predict the correct targets for a given set of inputs 
[11].  Figure 1 shows a mathematical model of an artificial neuron. 

 
Figure 1: Model of an artificial neuron 

Source: [3] 

A processing unit which known as neuron, sums the inputs, adds its bias, and then applies a nonlinear 
transfer function such as hyperbolic tangent or identity function. Finally, an output line transmits the 
output to other neurons as shown in Figure 1.  

1.2 Biological neural networks 

The human brain is the most complex structure known, and understanding its operation represents one 

of the more difficult and exciting challenges faced by science. Biological neural networks provide a 

driving force behind a great deal of research into artificial network models, which is complementary to 

the desire to build better pattern recognition and information processing systems. The human brain 

contains around 1011 electrically active cells called neurons. The branching tree of dendrites provides a 

set of inputs to the neuron, while the axon acts as an output. Communication between neurons takes 

place at junctions called synapses. Each neuron typically makes connections to many thousands of other 

neurons so that the total number of synapses in the brain exceeds 1014 [15]. Although each neuron is a 

relatively slow information processing system, the massive parallelism of information processing at 

many synapses simultaneously leads to a greater processing power, which exceeds that of present-day 

supercomputers. It also leads to a high degree of fault tolerance, with many neurons dying each day 

with a little adverse effect on performance [16].  Many neurons act in an all-or-nothing manner, and 

when they spike, they send an electrical impulse (called an action potential), which propagates from 

the cell body along the axon. When this signal reaches a synapse, it triggers the release of chemical 
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neurotransmitters that cross the synaptic junction to the next neuron.  Depending on the type of 

synapse, this can either increase (excitatory synapse) or decrease (inhibitory synapse) the probability 

of the subsequent neuron firing. Each synapse has an associated strength (or weight), which determines 

the magnitude of the effect of an impulse on the post-synaptic neuron. Each neuron thereby computes 

a weighted sum of the inputs from other neurons, and if this stimulation exceeds some threshold, the 

neuron fires. The fundamental property of both real and artificial neural systems is their ability to 

modify their responses as a result of exposure to external signals [15,3]. Figure 2 illustrates a biological 

neural network. 

 

 
Figure 2: A biological neural network 

Source: [17]  

Dendrites are fibres that emanate from the cell body and provide the receptive zones that receive 

activations from other neurons. The cell body (soma) sums the incoming signals. The action potential 

transmission is along the axon to other neurons or structures outside the nervous systems, e.g., 

muscles. The junctions that allow signal transmission between the axons and dendrites are called 

synapses. The transmission process is by diffusion of chemicals called neurotransmitters across the 

synaptic cleft. In neural networks, information storage is at the synapses [15]. In living organisms, 

synaptic weights change in response to external stimuli. An unpleasant experience will change the 

synaptic weights of an organism, which will train to behave differently [17].  

1.3 Activation functions 

An activation function manipulates the presented data through some gradient processing, usually 
gradient descent, and afterward produces an output for the neural network that contains the 
parameters in the data. The activation functions can be either linear or nonlinear based on the functions 
represented and are used to control the outputs of neural networks. The activation function links the 
weighted sums of units in a layer to the values of units in the next layer [18].  

For a linear model, the input vector x transformation is given by equation 1: 

f(x) = wx + b          (1  
Where: 

x = inputs, w = weights, b = biases 
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The bias is a scalar parameter that gives the neuron the possibility of shifting the function to the left or 
right and makes the neuron more powerful. The neural networks produce linear results from the 
mappings from equation 1, and the need for activation function arises, first to convert these linear 
outputs to nonlinear output for further computation, especially to learn patterns in data. The outputs 
of these models are given by equation 2: 

                            y = (w1x1+ w2x2+ …… + wnxn + b)              (2) 

These outputs of each layer are relayed to the next subsequent layer for multilayered networks until 
the final prediction. The expected target outputs determine the type of activation function to use in a 
given ANN. These activation functions are transfer functions, which are applied to the results of the 
linear models to produce the transformed non-linear results ready for further processing [18]. The non-
linear output after the application of the activation function is given by equation 3: 

                            Y= a (w1x1+ w2x2 + ----- + wnxn + b)                  (3) 

    Where a is the activation (transfer) function. 

Some of the used activation functions include: 
The identity activation is used in the output layer when the outputs are real values. It transfers the 
signals received unchanged, as shown in equation 4. 

                            f(x) = x                          (4) 

Hyperbolic Tangent function: 

The hyperbolic tangent function is one of the activation functions used in deep learning. Tanh is a 
smoother zero-centred function whose range lies between -1 to 1 and is defined as shown in equation 
5: 

                            𝑇𝑎𝑛ℎ =
𝑆𝑖𝑛ℎ(𝑥)

𝐶𝑜𝑠ℎ(𝑥)
=

 𝑒𝑥− 𝑒−𝑥

 𝑒𝑥+ 𝑒−𝑥                                          (5) 

Tanh is used mostly in the hidden layers of multilayer networks. Figure 3 illustrates the hyperbolic 
tangent function. 

 

 

 

 

 

 

 

Figure 3: Hyperbolic tangent activation function 



Artificial Neural Network for Prediction of Pollution Load of Lead, Copper, and Cadmium in a Water Resource:  
A case Study of River Sosiani, Eldoret Municipality, Kenya 

68 

2. Materials and Methods 

2.1 Study area 

The water quality parameters in river Sosiani, in Eldoret municipality, Kenya, were analyzed.  The 
physico-chemical parameters included; turbidity, electrical conductivity, and chemical oxygen demand; 
chemical parameters fluoride and phosphate; lead, copper, and cadmium. Figure 4 shows a map of the 
studyarea.

 

Figure 4: Map showing sampling points along river Sosiani 
Source: [2]. 

 2.2 Water sampling and pretreatment 

Sampling was carried out twice each during the months of June; July; and August; 2019 at six sampling 
points on river Sosiani. The water samples were analysed for the physico-chemical parameters turbidity, 
electrical conductivity, and chemical oxygen demand; chemical parameters fluoride and phosphate; 
lead, copper, and cadmium. The sample containers were washed twice using the river water before 
sample collection and sealing. Samples for the Pb, Cu, and Cd analysis were collected in 1-litre plastic 
bottles, which had been pre-cleaned with 3 % nitric acid and rinsed with deionized water, and then 
taken to the laboratory for the analyses. 

2.3 Water quality parameters 

The water quality parameters such as fluoride, phosphate, turbidity, electrical conductivity, and 
chemical oxygen demand were determined according to methods described by [2]. All the reagents 
used were analytical grade. 

2.3.1 Lead, copper and cadmium 

Lead, copper, and cadmium levels in the water samples were determined using the atomic absorption 
spectrometry method. A 100 ppm stock solution was prepared for Pb, Cu, and Cd. The 0, 1, 2, 3, 4, and 
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5 ppm, solutions were prepared by serial dilution of the stock solution of the respective metal ion. The 
wavelengths for the metal ions were Pb; 283.3 nm, Cu; 324.8nm, and Cd; 228.8 nm. Appropriate 
calibration was done using the standards, and then samples were analyzed for Pb, Cu, and Cd. 

2.3.2 Phosphate 

 Phosphate concentrations in the water samples were analyzed using UV-Vis Spectrophotometer [19] 
and all the reagents used were of analytical grade. A stock solution of 500 ppm phosphate was prepared 
by dissolving 2.195 g of potassium dihydrogen phosphate anhydrate in a glass beaker, then transferred 
into a 1000 mL volumetric flask and filled to the mark with distilled water. From the stock solution, 0, 
0.5, 1, 2.5, 5, 7.5, 10, and 12.5 ppm standard solutions of phosphate were prepared.  
  
A 3 M sulphuric acid was prepared in a 500 mL volumetric flask. Ammonium molybdate solution was 
prepared by dissolving 20 g of ammonium molybdate in about 100 mL distilled water, then transferred 
into a 500 mL volumetric flask and filled up to the mark with distilled water. A 1.375 g of potassium 
antimonyl tartrate was dissolved in about 300 mL of distilled water, transferred to a 500 mL volumetric 
flask. The ascorbic acid solution was prepared by dissolving 1.76 g of ascorbic acid in a 100 mL and 
diluted to the mark with distilled water. 

A mixed solution was prepared by mixing 50 mL of sulphuric acid, 15 mL of ammonium molybdate, 5 
mL of potassium antimonyl tatrate, and 30 mL of the ascorbic acid solution that had been made. The 
mixed solution was stable after 4 hours. To each 50 mL of the standard was added 8 mL of the mixed 
solution and allowed to stand for 30 minutes for proper colour development.  The absorbance readings 
were taken at 830 nm and used to prepare the calibration curve. The water sample was treated as the 
standards and was put in a sample cell, then placed in a UV-Vis spectrophotometer for absorbance 
reading. 
 

2.3.3 Chemical oxygen demand – COD 

The COD was determined by redox titration [2], which involved back titration of excess dichromate with 
ferrous ammonium sulphate solution.  Three portions of water samples were prepared in which 50.0 
mL of standardized K2Cr2O7 was pipetted into a 500 mL Erlenmeyer flask. A 50 ml of 9 M H2SO4 was added 

slowly with stirring. The mixture was cooled to 25°C, and 25.0 mL of the sample was cautiously pipetted 
into the cooled flask and homogenized. The solution was boiled gently using a hot plate while covered 
with a watch glass to minimize evaporation. The sample digestion was continued for about one hour 
and the volume lost to evaporation was replaced with distilled water to keep the solution volume 
almost constant.  The content of the sample flask was cooled to 25°C, 5 drops of ferroin indicator were 
added and the sample was titrated with 0.15 M ferrous ammonium sulphate until endpoint was 
reached. 

2.3.4 Electrical conductivity – EC 

The conductivity was measured using an electrical conductivity meter [20]. The EC meter was turned 
on and the probe was calibrated using a standard solution. The conductivity meter was calibrated 
before each sample measurement. The samples were placed in plastic beakers in volumes that 
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submerged the probe tip. The probe was cleaned with double-distilled water and blot dried before 
inserting into the sample vessel. The probe tip was in the sample until there was a stable EC reading. 

2.3.5 Turbidity 

Turbidity of the water sample was measured using an electric turbidity meter [2]. Hexamethylene 
tetramine reagent was prepared by dissolving 1.0 g of hexamethylene tetramine in distilled water. The 
hexamethylene tetramine solution was transferred into a 100 mL volumetric flask and filled up to the 
mark with distilled water.  Standard 4000 NTU was prepared by mixing 5 mL of hexamethylene 
tetramine and 5 mL of hydrazine sulphate in a 100 mL volumetric flask and allowed to stand for 24 
hours; the volume was then filled to the mark with distilled water. A 200 NTU was made from the 4000 
NTU standard reagent. The 200 NTU solution was added into a sample cell and placed in the turbidity 
meter.  The turbidity meter reading was adjusted to 200 NTU with the aid of a calibration knob. The 
process was repeated three times until calibration was complete. Water samples were added to the 
sample cells to the mark and wiped slowly using soft tissue. The sample cell was put in the turbidity 
meter and a stable reading was taken. 

2.3.6 Fluoride 

The fluoride concentration in the water samples was analyzed using a fluoride ion-selective electrode 

[21]. The instrument was calibrated using fluoride standard solutions with concentrations of 0.0, 0.1, 

1.0, 3.0, 5.0, 7.0, 10.0, and 20.0 ppm and TISAB II (Total Ionic Strength Adjustment Buffer). The TISAB II 

was prepared in a 1000mL beaker that contained 500 mL of distilled water, 57 mL glacial acetic acid, 58 

g sodium chloride, and 4 g 1, 2-cyclohexylenediaminetetraacetic acid-CDTA. The mixture was stirred to 

dissolve, and then the beaker was cooled. The pH was adjusted to between 5.0 and 5.5, and the mixture 

was transferred into a 1000 mL volumetric flask, then filled up to the mark using distilled water. 

The fluoride standard solution and TISAB II solution were mixed in the ratio of 1:1. The fluoride 
measurements for the standards were performed while stirring using magnetic stirrer and magnet stir 
bar for one minute for all samples. The fluoride concentration readings were taken in millivolt (mV) 
units and then converted to mg/L using the linear regression of the calibration curve. 

2.4 Artificial neural networks 

2.4.1 ANN modelling and implementation 

The multilayer perceptron feed-forward network, using a backpropagation training algorithm, was 
adopted with IBM SPSS statistics 20 software. The input data were from experimental results that 
formed part of this study. The inputs were physico-chemical parameters that included turbidity, COD 
and EC, and chemical parameters fluoride and phosphate.  The output layer had three dependent 
variables Pb, Cu, and Cd. The re-scaling method for both the input and output layers variables was 
standardized.  The 78 data sets were partitioned into training, testing, and validation in the ratio 3:1:1, 
respectively.  

The artificial neurons trained through supervised learning in which each output neuron was ‘told’ what 
its desired response to input signals ought to be. The experimental results for Pb, Cu, and Cd were the 
target outputs from the input signals. Back-propagation was used to adjust the weights of each unit to 
minimize the error between the target output and the actual output. 
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Double-layer artificial neural network topologies were used, and the number of neurons in the hidden 
layers varied from 2 to 6. The activation function for the hidden layer was tangent hyperbolic, while the 
output was the identity function. The batch network training criteria were adapted, with gradient 
descent as the optimization algorithm. The network learning rate was 0.4 and momentum 0.9. The 
network training stopping rules were; 5 steps without a decrease in error, maximum training time 15 
minutes, epochs 200, the minimum relative change in training error 0.0001, and minimum change in 
the training error ratio 0.001. Error function in the ANN model was measured using the sum of squares 
(SSE) based on the testing samples.  

2.4.2 ANN model performance testing 

Performance testing was by using sum squared error, Pearson product-moment, and slope-intercept, 
according to the methods described by [22]. The slope (m) and intercept (b) in the proximity of 1 and 
0, respectively, is indicative of better model performance. 

2.4.2.1 Sum squared error (SSE) 

The summed square of residual represents the sum of the square difference of the predicted values in 
comparison to the observed values and is given by equation 6. 

                           SSE = ∑ (Sobs − Scal)N
i=1

2                                         (6) 

Where N is the total number of datasets predicted, Sobs is the observed value of the metal cation 
concentration, and Scal is the calculated (ANN value) value of the metal cation. Lower SSE illustrates 
better model performance. 

2.4.2.2 Pearson product-moment coefficient of correlation, r 

The Pearson product-moment coefficient of correlation is given by equation 7.  

                            r =  
𝛴(Sobs− Ṧ𝑜𝑏𝑠) × (𝑆𝑐𝑎𝑙−  Ṧ𝑐𝑎𝑙) 

√(𝛴 (Sobs − Ṧobs)2×  (Scal − Ṧ𝑐𝑎𝑙)2) 
                        (7) 

Where:  
Ṧcal is the average calculated metal cation concentration. Equation 7 characterizes the strength of the 
correlation between simulated and observed data. The values of r nearing unity illustrate a good model. 

3. Results and Interpretation 

3.1 Physico-chemical parameters 

The levels of physico-chemical parameters in river Sosiani were as shown in Table 1.  

Table 1:  Levels of physico-chemical quality parameters 

Parameter (Units) N Range  Minimum  Maximum Mean ± Std 

EC [μS/cm] 78 1152.0 40.0 1192.0 422.223 ± 363.07 

Turbidty [NTU] 78 932.0 4.0 936.0 128.683 ± 208.12 

COD [mg/L] 78 2483.0 7.0 2490.0 452.820 ± 689.95 
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3.2 Chemical parameters 

The fluoride had a mean concentration of 0.174 ± 0.155 mg/L, minimum 0.001 mg/L, maximum 0.495 
mg/L, and range 0.494 mg; Phosphate levels in the river averaged 76.249 ± 114.772 mg/L, minimum 
1.440 mg/L, maximum 438.900 mg/L, and range 437.460 mg/L. 

3.3 Observed pollution loads of lead, copper, and cadmium 

The pollution loads of Pb, Cu, and Cd from laboratory analysis were as shown in Table 2. 

Table 2: Observed pollution loads 

3.4 Physicochemical and chemical parameters at the sampling sites 

The means of physico-chemical and chemical parameters’ concentrations at the sampling sites were 

as shown in Table 3. 

Table 3: Physico-chemical and chemical parameter concentrations (mean ± standard deviation) 

Parameter            N              Range Minimum Maximum Mean  ± Std dev 

Lead [mg/L]  78               1.283 0.137 1.420 0.615  ± 0.293 

Copper [mg/L] 78               0.118 0.011 0.129 0.037 ± 0.027 

Cadmium [mg/L]  78               0.165 0.040 0.205 0.096 ± 0.030 

Site Fluoride 

[mg/L] 

Phosphat

e [mg/L] 

EC 

[μS/cm] 

Turbidity 

[NTU] 

COD 

[mg/L] 

Pb  

[mg/L] 

Cu 

 [mg/L] 

Cd 

[mg/L] 

S1 0.107  

± 0.060 

13.98 

 ± 20.48 

41.62 

± 1.21 

13.00 

± 8.95 

11.20 

± 3.77 

0.544 

± 0.325 

0.032 

± 0.015 

0.082 

± 0.015 

S2 0.177 

 ± 0 .189 

8.37 

± 5.64 

80.99 

± 25.38 

35.40 

± 29.77 

26.29 

± 15.64 

0.423 

± 0.269 

0.027 

± 0.011 

0.085 

± 0.022 

S3 0.151 

± 0.159 

12.64 

± 16.25 

109.07 

± 39.20 

39.08 

± 39.73 

20.56 

± 18.58 

0.440 

±  0.205 

0.027 

± 0.012 

0.091 

± 0.014 

S4 0.169 

± 0.168 

10.39 

± 7.36 

108.55 

± 25.42 

49.33 

± 50.97 

22.63 

± 23.78 

0.409 

± 0.182 

0.030 

± 0.017 

0.093 

± 0.019 

Site Fluoride 

[mg/L] 

Phosphat

e [mg/L] 

EC 

[μS/cm] 

Turbidity 

[NTU] 

COD 

[mg/L] 

Pb  

[mg/L] 

Cu 

 [mg/L] 

Cd 

[mg/L] 

S5 0.143 

± 0.123 

9.57 

± 6.81 

143.84 

± 17.96 

83.49 

± 119.67 

34.00 

± 14.86 

0.548 

± 0.276 

0.043 

± 0.030 

0.096 

± 0.027 

S6  0.237 

± 0.212 

128.82 

± 140.08 

609.84 

± 175.76 

224.05 

± 210.63 

582.65 

± 311.36 

0.784 

± 0.346 

0.094 

± 0.035 

0.112 

± 0.041 
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The results from the six sampling points illustrate an increase in pollution from S1 to S6.  Upstream, the 
anthropogenic and industrial pollution is minimal, while the downstream pollution is by industrial and 
domestic wastewater. For example, site S6 receives wastewater from the nearby informal settlement 
of Huruma estate.  The phosphate level at S1 is the highest and attributed to runoff from the agricultural 
land. 

3. 4 ANN models 

The ANN predicted pollution loads of Pb, Cu, and Cd in river Sosiani are in Table 4. 

Table 4: ANN pollution loads 
Parameter N Range Minimum Maximum Mean ± Std dev  

ANN-Pb [mg/L] 78 1.282 0.136 1.418 0.614 ±0.293  

ANN-Cu [mg/L] 78 0.102 0.009 0.111 0.032 ± 0.023  

ANN-Cd [mg/L] 78 0.184 0.011 0.195 0.073 ± 0.033  

The double-layer, multilayer perceptron networks gave good performances. Figure 5 shows the ANN 
architecture with five input variables, five neurons in the first and second hidden layers, respectively, 
and three output variables, 5-5-5-3 model. Figures 6, 7, and 8 illustrate scatter plots of the actual 
outputs against the target outputs for lead, copper, and cadmium, respectively. The importance of the 
independent variables in predicting the dependent variables on a scale of 1.000 were phosphate 
0.284, fluoride 0.250, turbidity 0.189, EC 0.151, and COD 0.126.  

 
Figure 5: An architecture of artificial neural network of 5-5-5-3 model 



Artificial Neural Network for Prediction of Pollution Load of Lead, Copper, and Cadmium in a Water Resource:  
A case Study of River Sosiani, Eldoret Municipality, Kenya 

74 

 
Figure 6: Predicted values against observed values scatter graph for lead 

 

 
Figure 7:  Predicted values against observed values scatter graph for copper 
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Figure 8: Predicted values against observed values scatter graph for cadmium 

 

3.5 ANN model performances analysis 

3.5.1 Sum squared error, SSE 

From the sum squared error, the ANN models, 5-5-5-3, and 5-6-6-3 gave the lowest values, and 
therefore, better performances shown in Table 5. 

Table 5: Sum squared error for ANN models 

3.5.2 Pearson product-moment correlation coefficient 

All the ANN models performed better in predicting the concentrations of Pb, Cu, and Cd from the input 
data. Table 6 indicates the Pearson product-moment correlation coefficient for lead, copper, and 
cadmium. 

ANN model Sum squared error 

 Pb Cu Cd 

5-2-3-3 0.588307 0.014209 0.034052 

5-3-4-3 0.733787 0.014209 0.032572 

5-4-5-3 0.726887 0.004449 0.017792 

5-5-5-3 0.000367 0.004449 0.040112 

5-6-6-3 0.000367 0.004449 0.022572 
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Table 6: Pearson product-moment correlation coefficients for the models 

Model Pearson product-moment correlation coefficient 

 Pb Cu Cd 

ANN 5-2-3-3 0.9999 0.9882 0.9706 
ANN 5-3-4-3 0.9999 0.9882 0.9581 
ANN 5-4-5-3 0.9999 0.9910 0.9885 
ANN 5-5-5-3 0.9999 0.9910 0.9965 
ANN 5-6-6-3 0.9999 0.9910 0.9933 

 
3.5.3 Slope (m) and intercept (b) 

The performance model 5-5-5-3 was the best with the slope and intercept, in the proximity of 1 and 0, 
respectively. Table 7 shows the slopes and intercepts of the ANN model. 

Table 7: Slopes and intercepts for ANN model 

Model Predicted parameter Slope Intercept 

    
ANN 5-2-3-3 Pb 0.7143 0.200 

Cu 0.7141 0.000 
Cd 0.3501 0.062 

ANN 5-3-4-3 Pb 0.6667 0.200 
Cu 0.7143 0.000 
Cd 0.3333 0.060 

ANN 5-4-5-3 Pb 0..8000 0.200 
Cu 0.8571 0.000 
Cd 0.6000 0.031 

ANN 5-5-5-3 Pb 0.9999 0.000 
Cu 0.8571 0.000 
Cd 1.1111 -0.033 

ANN 5-6-6-3 Pb 0.9998 0.000 
Cu 0.8371 0.001 
Cd 0.7831 0.036 

4. Discussion 

The laboratory results and the ANN predictions (Tables 1, 2 and 3), the levels of EC, copper, and fluoride 
were below WHO guideline values of 1500 μS/cm,   2 mg/L, and 1.5 mg/L.  The lead and cadmium levels 
exceeded the WHO guideline values of 0.01 mg/L and 0.003 mg/L, respectively. Turbidity exceeded the 
guideline value of 5 NTU and was likely to affect the acceptability of water from the resource for 
domestic use [23]. 
 

The ability of input variables to predict levels of the outputs in the water resource is due to a correlation 

explained by the water chemistry. Phosphates work by binding the divalent metals, Pb, Cu, and Cd, to 

form compounds. For example, soluble Pb can be immobilized by phosphate to form Pb-phosphate 

species such as pyromorphite, Pb5(PO4)3Cl. Agricultural runoffs often include nutrients such as 

phosphates, and calcinated phosphate is a better adsorbent for Pb2+, Cu2+, and Cd2+ [24]. Sources of 
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fluoride in surface water include weathering of fluoride-bearing mineral rocks and anthropogenic 

sources such as pharmaceutical products, fertilizers, and toothpaste [25]. Phosphate fertilizers originate 

from phosphate rocks bearing high levels of fluoride in the form of fluorapatite, Ca5(PO4)3F.  The fluoride 

forms complexes with several cations, including Pb2+, Cu2+, and Cd2+ [26]. Turbidity is often widely used 

to detect the occurrence of pollutants in surface water.  Metals are particle-bound pollutants in surface 

water with suspended solids associated with 60 – 97% of total metals in surface water. Turbidity is 

affected by the properties of the transported sediments, such as shape, size, and mineral composition. 

Transported suspended solids absorb metals; hence, turbidity is used to detect the occurrence of the 

metals in surface water [27]. Electrical conductivity is a measure of the ability of water to conduct an 

electric current and is an indicator of mineral contents and is related to the ionic content of the water 

sample. It is the ions present in water, such as Pb2+, Cu2+, and Cd2+ that carry electrical current, and 

conductivity increases as the concentration of ions increases. The COD is a measure of the susceptibility 

to oxidation of the inorganic materials such as Pb, Cu, and Cd, and organic materials present in water 

bodies. The COD test is non-specific as it does not differentiate between organic and inorganic material 

present in a water resource [28]. In a related study by [29], the correlation coefficient for ANN models 

for Pb, Zn, and As were 0.9911, 0.9421, and 0.9637, respectively, and the results related well with the 

findings of this study. 

5. Conclusions 

Artificial neural network modeling technique was used to determine the relationships between the 
concentrations of metal cations, Pb, Zn and As with physico-chemical parameters such as EC, COD, and 
turbidity as well as the chemical parameters F- and PO3-4 in a water resource. The mean laboratory 
pollution loads in river Sosiani were 0.615, 0.037, and 0.096 mg/L for Pb, Cu and Cd, while ANN 
predicted 0.614, 0.032, 0.073 mg /L, respectively. The correlation coefficients for ANN 5-5-5-3 model’s 
predicted and observed values were; Pb 0.9999, Cu 0.9910, and Cd 0.9965. The results from this study 
show that artificial neural networks can model the behavioral relationship between changes in the 
water quality variables and the concentrations of Pb, Cu, and Cd. The ANN model was able to learn the 
nonlinear relationships between the predictor variables in Electral Conductivity, Chemical Oxygen 
Demand, fluoride, phosphate, and turbidity and target outputs Pd, Cu, and Cd. There is evidence that 
the proposed ANN model can effectively predict the pollution load in the water resource. However, the 
study recommends further research with diverse samples to validate these findings. 
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