

Performance Comparison of SUPERPAVE and Marshall Asphalt Mix Designs in Relation to Kenya's Climatic Conditions

*Nicholas Ojune Parapara, Simpson Nyambane Osano, John Francis Gichaga and Hesbon Moriasi Okari

Received on 22nd May, 2025; Received in revised form 9th June, 2025; Accepted on 8th July, 2025.

Abstract

This study examines the effectiveness of asphalt mixes designed using the Marshall and Superior Performing Asphalt Pavement (SUPERPAVE) methodologies, assessing their suitability for Kenya's diverse climatic conditions and traffic demands. A comprehensive characterisation of materials, including asphalt binders and aggregates, was conducted to ensure compliance with design criteria, followed by performance analyses comparing the two mix design approaches. Laboratory evaluations of hot mix asphalt (HMA) samples focused on key mechanical properties, including indirect tensile strength, Marshall stability, rutting resistance, and moisture susceptibility, to determine their viability for Kenyan road infrastructure. The findings indicate that incorporating Styrene-Butadiene-Styrene (SBS) into 60/70 penetration-grade bitumen substantially enhances strength, thermal stability, and structural integrity, making it highly suitable for high-traffic, high-temperature environments. SUPERPAVE-designed mixes outperformed Marshall mixes by optimising binder content, reducing asphalt usage, and significantly improving resistance to moisture damage, rutting, and long-term deterioration. Marshall stability and indirect tensile strength tests indicated higher initial strength values in SUPERPAVE mixes than Marshall mixes, and they were also more durable following moisture conditioning. Additionally, rut depth analysis confirmed that polymer-modified bitumen enhances rut resistance in SUPERPAVE HMA, outperforming neat bitumen. The study verified that the tested aggregates conform to relevant standards, reinforcing their suitability for high-performance asphalt applications. Given these findings, the study strongly advocates adopting SUPERPAVE as Kenya's climate-responsive, performance-driven pavement design system. It emphasises the need for targeted capacity-building through specialised training programmes, pilot projects with performance monitoring, and economic feasibility assessments integrated with policy advocacy to facilitate its implementation. Furthermore, it calls for developing Kenya-specific binder and aggregate selection standards using the Performance-Graded (PG) system, enforcing stringent quality assurance protocols, and making necessary updates to national road design standards. By prioritising long-term cost efficiency and pavement resilience, the study emphasises the importance of fostering collaboration and knowledge exchange among industry stakeholders, ensuring sustainable advancements in Kenya's road infrastructure.

Keywords: Aggregates, asphalt binders, hot mix asphalt, climatic conditions, Marshall method, pavement performance, road infrastructure, SUPERPAVE, traffic loading

INTRODUCTION

Kenya's diverse climatic conditions played a significant role in the performance and durability of asphalt pavements. The country's tropical climate, characterised by regional variations in temperature, rainfall, and humidity, posed challenges in designing road infrastructure that could withstand environmental stresses. Traditionally, Kenya relied on the Marshall mix design method, which did not adequately account for the impact of moisture and temperature variations on pavement longevity. This limitation highlighted the need to explore alternative approaches, such as the Superior Performing Asphalt Pavement (SUPERPAVE) system, which integrates environmental and traffic-related factors to optimise pavement performance. Developed under the Strategic Highway Research Program (SHRP) in the United States during the late 1980s (Cominsky & National

^{*}Corresponding author:

Nicholas Ojune Parapara Regional Engineer, Kenya Rural Roads Authority, Student, MSc Civil Engineering (Transportation Engineering), Department of Civil and Construction Engineering, University of Nairobi Kenya. Email: nichojune@students.uonbi.ac.ke

Research Council, 1994), SUPERPAVE offered a performance-based methodology that tailored asphalt mixtures to specific climatic conditions. The approach gained global recognition and was successfully implemented in countries such as Jordan (Asi, 2007) and Thailand (Jitsangiam et al., 2013). Given Kenya's unique temperature and traffic conditions, evaluating SUPERPAVE's applicability was fundamental in determining its potential to enhance pavement resilience and extend service life.

This study evaluated the suitability of the SUPERPAVE system for Kenyan roads by identifying appropriate performance-graded (PG) asphalt binders. The PG grading system selects binders based on expected temperature variations to ensure optimal performance under diverse conditions (Garber & Hoel, 2009). The study primarily aimed to compare the performance of asphalt mixes designed using the Marshall and SUPERPAVE methodologies within Kenya's environmental conditions. Specifically, the study assessed the suitability of the SUPERPAVE system for Kenyan roads by characterising asphalt binders and aggregates, comparing the mechanical performance of both methods, and recommending the implementation of binder selection and mix design to enhance pavement durability and performance. By adopting climateresponsive pavement design methods, roads can be better equipped to withstand extreme conditions, improving safety, reducing maintenance costs, and advancing sustainable construction practices.

THEORY

In Kenya and many East African countries, penetration-grade bitumen has been the conventional choice for asphalt pavements, classified based on its penetration depth at 25°C. However, this method fails to represent binder behaviour under fluctuating temperatures fully (Mihretu & Zelelew, 2025). In contrast, the SUPERPAVE PG grading system evaluates binders based on their rheological properties at multiple temperatures, offering a more precise long-term performance assessment. Adopting this performance-based framework would enable a more strategic selection of asphalt binders tailored to Kenya's climatic conditions.

Current asphalt binder testing in Kenya relies

on traditional methods focusing on physical characteristics such as ductility, viscosity, and penetration, typically assessed under standard laboratory conditions. Common penetration grades, including 35/50, 40/50, 60/70, and 80/100, adhere to national specifications (Standard Specifications for Road and Bridge Construction, MoR&PW, 1986). However, these empirical testing approaches operate within a limited temperature range and lack predictive capability regarding binder performance in real-world applications. The inability to differentiate bitumen types effectively and anticipate long-term behaviour emphasises the necessity of transitioning to a more advanced, climate-responsive evaluation system like SUPERPAVE.

Traditionally, the Marshall mix design method has dominated pavement construction in Kenya due to its simplicity and established usage. However, its emphasis on volumetric properties neglects critical performance factors such as binder rheology and climate resilience. Conversely, SUPERPAVE integrates binder properties, aggregate gradation, and volumetric criteria, optimising mix durability across varying environmental and traffic conditions (Zhao et al., 2021) and (Hu et al., 2020). Comparative studies have consistently demonstrated that SUPERPAVEdesigned mixtures outperform Marshall mixes in resisting rutting, moisture-related damage, and cracking, especially when combined with performance-graded binders (Zhao et al., 2021).

International research reinforces SUPERPAVE's advantages where by (Asi, 2007) assessed its performance in Jordan, confirming its superior rutting resistance and durability, qualities that align well with Kenya's climate. Similarly, (Jitsangiam et al., 2013) examined its application in Thailand, identifying limitations in traditional mix designs, including inadequate compaction techniques and inconsistent performance testing. Although their study did not directly propose modifications to mix designs, it highlighted the need for climate-adapted methodologies. Despite its promising attributes, SUPERPAVE remains undocumented mainly in Kenya's pavement research and construction practices. While familiar and straightforward, the continued reliance on the Marshall method does not sufficiently address binder performance under Kenya's diverse climatic and traffic conditions (Zumrawi & Edrees, 2016).

Using SUPERPAVE mix designs, roads such as Malaba-Webuye, Kaburengo-Kakamega, and Ahero-Kisii have been built under the Kenya National Highways Authority (KeNHA). However, since SUPERPAVE's introduction in the late 1990s, no comprehensive evaluations have been conducted to compare their performance against Marshall-designed pavements.

A systematic assessment of SUPERPAVE's effectiveness in Kenya is essential to establish whether its performance-based framework can better accommodate increasing traffic volumes and climatic variability. Limited studies exist on characterising penetration-grade bitumen within the PG system, which hinders the transition to scientifically backed binder selection criteria. Additionally, comparative evaluations of hot mix asphalt (HMA) designed using Marshall and SUPERPAVE techniques are deficient, restricting the ability to make informed, evidence-driven mix design choices. Bridging these research gaps will facilitate the adoption of advanced asphalt pavement design practices, improving infrastructure resilience and long-term performance in Kenya's evolving road network.

RESEARCH METHODS

Materials Characterisation

The materials characterisation process involved collecting asphalt binder and aggregate samples representative of Kenyan construction practices to evaluate their suitability for local climate and traffic conditions. Laboratory tests, including rheological assessments and compatibility studies, were carried out to identify materials that would perform well to implement the SUPERPAVE system effectively.

For asphalt binders, the focus was on commonly used penetration grades (35/50, 50/70, 60/70, 80/100) and polymer-modified asphalt (PMA) blends, particularly 60/70 modified with Styrene-Butadiene-Styrene (SBS). Rheological testing adhered to the SUPERPAVE Performance Grade (PG) system, utilising dynamic shear rheometer high-intermediate-(DSR) tests to assess temperature behaviour. Due to the absence of Bending Beam Rheometer (BBR) equipment, lowtemperature properties were estimated at -22°C using industry correlations aligned with Kenya's moderate climatic conditions (ORN 19, Design of

Hot Mix Asphalt, 2002). Additional evaluations of the binders included penetration, softening point, flash point, loss on heating, ductility, and solubility analyses, ensuring they were classified into performance grades suitable for local environments.

For aggregates, single-size crushed limestone from Katani Quarry in Mlolongo, Machakos County, was analysed for gradation, particle shape, angularity, and cleanliness. These assessments ensured compliance with the SUPERPAVE volumetric criteria, optimising mechanical stability and durability in asphalt mixtures. This comprehensive approach ensured that locally available materials met the performance standards required for sustainable pavement applications in Kenya.

Asphalt Mix Design Procedures

The comparative evaluation of Marshall and SUPERPAVE mix design methods involved systematically producing HMA samples to assess their performance under heavy traffic conditions. The design process began with selecting optimal aggregate gradation curves, ensuring compliance with the respective method's specifications. Aggregate gradation for the Marshall method followed Kenya's (*Standard Specifications for Road and Bridge Construction, MoR&PW, 1986*), while SUPERPAVE adhered to AASHTO M 323 standards (Asphalt Institute, 2014).

Specimens were prepared with varying asphalt binder content to determine the optimum bitumen content (OBC), which was identified at maximum stability and acceptable flow values. The mix design process focused on achieving key volumetric properties, including air voids (typically 4%), voids in mineral aggregate (VMA), and voids filled with bitumen (VFB) to ensure a balance of durability and workability. SUPERPAVE aggregate gradation design considered particle angularity, flat and elongated particles, and sand equivalent values to meet performance criteria.

Further analysis of the mixtures involved evaluating rutting resistance, fatigue resistance, and moisture susceptibility through iterative laboratory testing. These assessments provided insights into the structural integrity of the designed HMA mixtures, ensuring their suitability for Kenya's traffic and environmental conditions.

Figure 1 shows the representation of volumes in a compacted HMA specimen for the Marshall and SUPERPAVE methods adopted from the Asphalt Institute, MS-2, 1994 (ORN 19, Design of Hot Mix Asphalt, 2002).

Performance Testing

Comprehensive laboratory testing assessed the mechanical behaviour of HMA samples designed using the Marshall and SUPERPAVE methods under simulated heavy traffic and

VMA = Volume of voids in mineral aggregate
Vmb = Bulk volume of compacted mix
Vmm = Voidless volume of HMA mix
VFB = Volume of voids filled with bitumen
VIM = Volume of air voids
Vb = Volume of bitumen
Vba = Volume of absorbed bitumen
Vsb = Volume mineral aggregate (by bulk specific gravity)
Vse = Volume of mineral aggregate (by effective specific gravity)

FIGURE 1

Representation of compacted HMA specimen **Source:** ORN 19, Design of Hot Mix Asphalt, 2002

Kenya's climatic conditions. These evaluations encompassed indirect tensile strength to gauge resistance to cracking, loss of indirect tensile strength to determine susceptibility to moisture damage, Marshall stability to measure loadbearing capacity, loss of Marshall stability to assess durability under repeated loading, and rutting behaviour to evaluate deformation resistance under sustained traffic conditions. The results provided valuable comparative performance indicators, facilitating an assessment of durability, resilience, and suitability for Kenya's diverse environmental and traffic conditions.

RESULTS AND DISCUSSION

Asphalt Binders and Aggregate Characterisation Results

Asphalt Binders

Table 1 provides a comparative physical analysis of various straight-run bitumen samples widely used in Kenya, including penetration grades 35/50, 50/70, 60/70, and 80/100. It outlines essential parameters influencing performance, applicability, and suitability across diverse climatic and traffic conditions. Evaluations of asphalt binders involve testing key characteristics such as penetration, softening point, viscosity, specific

gravity, solubility, flash point, and performance grading (PG) to assess their effectiveness.

The penetration test indicated binder hardness, with 35/50, 50/70, and 60/70 grades mostly within specification, while 80/100 was softer than optimal, potentially increasing susceptibility to rutting under heavy loads. Softening point assessments confirmed that most grades had sufficient thermal resistance, though 80/100 posed a deformation risk in high-temperature environments. Viscosity testing at 135°C verified that all grades exhibited appropriate flow characteristics, with 60/70 offering better workability for asphalt production. Specific gravity measurements showed consistency across samples, ensuring reliable asphalt mix performance. High solubility values (99.8–99.9%) affirmed bitumen purity, promoting strong aggregate adhesion and durability. Flash point testing (297-347°C) confirmed safe handling during asphalt processing. Ongoing performance grading (PG) using DSR tests, as shown in Figure 2 and Appendix B, revealed that the 35/50 grade (PG 82-22) suited varied climates, while the 50/70 grade (PG 64-22) performed well in moderate conditions. 60/70 (PG 76-22) proved optimal for high-traffic environments, whereas 80/100 (PG 58-22) showed limitations under heavy loads, favouring lighter traffic applications. This

TABLE 1

Physical analysis for sampled straight-run bitumen available in Kenya

	Bitumen Sample Ty		35/50		50/70		60/70		80/100	
No.	Test	Standard Specifica- tion	TRs	Criteria	TRs	Crite- ria	TRs	Criteria	TRs	Criteria
1	Penetration Test at 25 °C, 0.1mm	EN 1426	38.2	35 - 50	54.7	50 - 70	67.2	60 - 70	82.7	80 -100
2	Softening Point (Ring & Ball) Neat, °C	EN 1427	55	50 - 58	54	46 - 54	51	46 - 52	46	40 - 46
3	Viscosity at 135 °C (Virgin), cSt	EN 13302	551	400 - 600	480	400 - 600	345	345 - 400	348	300 - 400
4	Specific Gravity at 25 °C	EN 15326	1.03	1.01 - 1.05	1.03	1.01 - 1.05	1.02	1.01 - 1.05	1.03	1.01 - 1.05
5	Solubility in Tri- chloroethylene, %	EN 12592	99.9	99.5 - 100	99.8	99.5 - 100	99.8	99.5 - 100	99.8	99.5 - 100
6	Flash Point (Cleve- land Open Cup), °C	EN 22592	338	230 - 350	342	230 - 350	347	230 - 350	297	230 -350
7	Performance Grade, (DSR), PG	AASHTO T 315	PG 82- 22		PG 64- 22		PG 76- 22		PG 58-22	
]	Resistar	nce to hard	ening a	t 163 0C				
8	Retained Penetra- tion, 0.1mm	EN 12591	32.4	28 - 40	51.4	40 - 60	58.5	45 - 65	77.9	60 - 80
9	Increase in Soften- ing Point, °C	EN 1427	2	1 - 4	3	2 - 5	2	2 - 5	2	2 - 5
10	Thin Film Oven Test (TFOT), cm	EN 12607- 1	0	0 - 0.3	0.2	0 - 0.3	0.2	0 - 0.3	0.2	0 - 0.3
11	Loss on Heating, %	EN 12607- 2	0	0 - 0.5	0.2	0 - 0.5	0.1	0 - 0.5	0.2	0 - 0.5
12	Ductility at 25°C after RTFOT, cm	EN 1426	95	90 min	100+	75 min	100+	80 min	100+	90 min
TRs*	- (Test Results)									

Source: Field survey, 2025

FIGURE 2 Ongoing evaluation of rheological properties of neat bitumen binders using DSR Source: Field survey, 2025

comprehensive analysis ensures informed binder selection for Kenya's durable and climate-resilient asphalt pavement solutions.

The evaluation above confirms that the tested bitumen binders meet the essential performance criteria for asphalt pavement applications in Kenya's varied climatic conditions. Each grade exhibits distinct strengths and limitations, influencing its suitability based on expected traffic loads and environmental factors. Proper grade selection is vital for enhancing pavement durability and longevity, mitigating potential failures.

Figure 3 shows a high-shear mixer mixing asphalt binder (60/70) and SBS, while DSR test data are captured in Appendix B. The analysis in Table 2 highlights the significant impact of SBS modification on the performance of 60/70 penetration grade bitumen. As SBS content increases, penetration values decrease. However, at 4.7% SBS, penetration falls below the standard range, suggesting excessive hardening that may affect workability. The softening point increases, improving thermal resistance, which is essential for hot climates as it reduces susceptibility to rutting. Elasticity improves, with recovery percentages exceeding 60%, minimising the risks of cracking and ensuring better load distribution. The binder retains elasticity despite oxidative and thermal stress, reinforcing long-term durability. While

dynamic viscosity rises with higher SBS content, values remain within permissible limits, ensuring smooth mixing and paving. High flashpoint temperatures (\geq 230°C) confirm thermal stability, reducing overheating risks during processing. All tested formulations maintain a PG 82-22 classification, demonstrating the binder's ability to withstand extreme heat (up to 82°C) without degradation and cold conditions (-22°C) while retaining flexibility, preventing brittleness and cracking.

Among the tested formulations, 4.2% of SBSmodified bitumen exhibits the best balance between stiffness, elasticity, and thermal resistance. This concentration effectively enhances durability and adaptability, making it suitable for heavy traffic zones and extreme temperature conditions. Given Kenya's variable climate, integrating SBSenhanced asphalt into pavement designs ensures superior resistance to expansion and contraction cycles, mitigating thermal cracking and premature wear.

The evaluation of Performance Grade (PG) test results emphasises the substantial improvements offered by SBS modification, ensuring superior performance across a broad temperature range. These findings reinforce the suitability of SBSenhanced binders for challenging climatic conditions and heavy-duty road construction.

FIGURE 3

Mixing of 60/70 penetration grade bitumen and SBS using High-Shear Mixer **Source:** Field survey, 2025

TABLE 2

60/70 PMA analysis at 3.7%, 4.2% and 4.7% of SBS

			SBS %	added to 60/	70	
No.	Test	Standard Specifi- cation	3.7	4.2	4.7	Criteria
1	Penetration, 0.1mm	EN 1426	66.7	62.5	46.4	60 -70
2	Softening point, °C	MB – 17	62	79	81	65-85
3	Elastic Recovery at 15 °C, %	MB - 4	78	83	89	>60
4	Dynamic Viscosity at 165 °C, Pa.s	MB – 18	0.380	0.422	0.468	<0.600
5	Flashpoint, °C	ASTM D92	353	365	361	≥230
6	Performance Grade (DSR), PG	AASHTO T 315				
	PG 82-22	PG 82-22	PG 82-22			
	Proper	ties after ageing (R	TFOT), MB	-3		
7	Difference in Softening point, °C	MB – 17	1	3	3	-2 to +8
8	Elastic Recovery at 15 °C, %	MB - 4	53	71	76	>50
9	Mass change, %	MB – 3	0	0	0	≤1.0

Source: Field survey, 2025

Specifically, where temperature variability is notable in Kenya, polymer-modified binders, particularly SBS-enhanced asphalt, improve elasticity and thermal stability, allowing pavements to endure expansion and contraction cycles without significant deterioration. Incorporating regional climate data into binder selection ensures resilient, durable, and well-adapted pavements for Kenya's environmental conditions.

Aggregates

Table 3 presents the physical properties of the coarse aggregates utilised in this study. It assesses their performance against established design criteria from Kenya's (*Road Design Manual, Part III, MT&C, 1987*) for heavy traffic beyond 30 million Equivalent Single Axle Loads (ESALs). The results reveal that the aggregates exhibit commendable characteristics that suggest their suitability for high-performance asphalt concrete applications.

Key properties such as the Los Angeles Abrasion (15.1%), Aggregate Crushing Value (18.5%), and Sodium Sulphate Soundness (1.4%) are notably below the maximum specified thresholds, indicating excellent durability and resistance to mechanical wear and environmental degradation.

The low values for Los Angeles Abrasion and Aggregate Crushing Value imply that these aggregates will likely provide a robust foundation for asphalt pavements, ensuring longevity even under heavy traffic conditions. Moreover, the high 10% Fines Value (248 kN) signifies strong aggregate interlock and mechanical stability within the asphalt mix, further contributing to the pavement's structural integrity. The Sand Equivalent tests (87.8% for 0/6mm and 74.5% for 0/3mm) show adequate cleanliness, essential for achieving optimal bonding between the aggregates and the binder.

These good physical properties suggest that the coarse aggregates are well-suited for asphalt concrete design. They can significantly enhance the performance and durability of road surfaces in Kenya, especially in areas with heavy loads and fluctuating climatic conditions. As detailed in **Appendix E**, a sieve analysis was conducted to determine the combined specific gravity, water absorption and maximum specific gravity for Aggregates to be used in the Marshall & SUPERPAVE Methods. **Appendix A** shows photos of the progress of laboratory tests conducted for the study.

TABLE 3

Physical properties of coarse aggregates used

No.	Test Description	Test standard	Test value	Design Criteria per Road Design Manual, Part III, MT&C, 1987
1	Los Angeles Abrasion, LAA (%)	AASHTO T96	15.1	30 Max
2	Aggregate Crushing Value, ACV (%)	BS 812:110	18.5	25 Max
3	Sodium Sulphate Soundness, SSS (%)	BS 812:121	1.4	5 Max
4	Aggregate Impact Value, AIV (%)	BS 812: 112	13.2	20 Mix
5	10% Fines Fact Value, FFV (KN)	BS 812:111	248	150 Min
6	Sand Equivalent (0/6mm) (%)	AASHTO T176	87.8	45 Min
7	Sand Equivalent (0/3mm) (%)	AASHTO T177	74.5	45 Min

Source: Kenya's (Road Design Manual, Part III, MT&C, 1987)

Optimum Mix Designs from Marshall and SUPERPAVE Methods

Marshall Method of Mix Design

Following recommendations from the (Asphalt Institute, 2014) & (ORN 19, Design of Hot Mix Asphalt, 2002), the Marshall mix design procedure, ensures optimal aggregate gradation and binder content for heavy traffic loads under varying climatic conditions. A sieve analysis was conducted to determine the proper gradation and proportions of selected aggregates, meeting the required specifications. **Figure 4** presents the gradation chart of single-size and combined aggregate blends, including 14/20mm, 10/14mm, 6/10mm, 0/6mm, and 0/3mm sizes. The detailed grading for the aggregates is captured in **Appendix C**.

The Marshall asphalt concrete mix design procedure (AASHTO T 245), utilising a 10.16 cm sample diameter, is the standard approach in Kenya (Asphalt Institute, 2014). To determine the optimum bitumen content (OBC), the study followed Kenya's (*Standard Specifications for Road and Bridge Construction, MoR&PW*, 1986) for heavy traffic binder courses. Specimens were moulded with binder contents ranging from 4.5% to 6.2% (in increments of 0.5% by weight of mineral aggregates). Each specimen was compacted using

FIGURE 4

Gradation chart of aggregates for ACWC 0/20mm, Type 1- Binder Course **Source:** Field survey, 2025

a Marshall compactor, applying 75 blows on both sides to simulate field conditions for heavy traffic.

Comprehensive test results, including bulk density, stability, flow value, and volumetric properties, were analysed. **Table 4** summarises the Marshall specimen trial design parameters for Asphalt Concrete (AC) and specified limits. At the same time, the whole dataset and applied formulas are provided in **Appendix F**. Calculations were conducted using Excel spreadsheets to ensure precision and efficiency. **Figure 5** presents Marshall Mix design volumetric property curves, illustrating the mix's performance characteristics. Marshall test specimens underwent bulk density, stability, and flow value assessments to confirm compliance with Kenya's design parameters for HMA. The primary objective was to determine OBC that achieves 4% air voids, ensuring durability while minimising permeability.

Using the Asphalt Institute MS-2 method, the OBC was calculated based on a 4.0% design air void content (VIM). All key parameters, including voids in mineral aggregate (VMA), voids filled with bitumen (VFB), stability, flow, and dust binder content, met specified limits, affirming a well-balanced mixture. The study determined that the optimum binder content for the Marshall mix was 5.88% by aggregate weight, reinforcing the method's emphasis on stability and flow to support heavy traffic loads.

TABLE 4

Marshall trial design param	eters of AC and specified limits
-----------------------------	----------------------------------

% Bitumen by wt. of mix, Pb	Bulk S.G. Specimen, Gmb	Bulk S.G Aggregate, Gsb	Effective S.G. Agg., Gse	Max. S.G. (Loose Mix), Gmm	% Air Voids (VIM)	%VMA	%VFB	Stability, kN	Flow (0.25 mm)	Dust Binder Ratio
4.2	2.198	2.470	2.549	2.398	8.3	14.7	43.5	15.7	2.5	0.9
4.7	2.249	2.470	2.549	2.381	5.6	13.2	57.9	16.1	2.8	1.0
5.2	2.221	2.470	2.549	2.365	6.1	14.7	58.9	12.0	2.1	1.1
5.7	2.245	2.470	2.549	2.348	4.4	14.3	69.3	12.2	2.6	1.2
6.2	2.255	2.470	2.549	2.332	3.3	14.4	77.0	11.5	2.9	1.3
Design Criteria Requirements			3-5%	>13%	65-75%	9-18kN	2-4 mm	0.6-1.2		

Source: Kenya's (Standard Specifications for Road and Bridge Construction, MoR&PW, 1986)

VFB

5.2

Bitumen Content (%)

5.2

Bitumen Content (%)

Flow

5.7

5.7

6.2

6.2

4.7

4.7

FIGURE 5

Marshall mix design curves **Source:** Field survey, 2025

SUPERPAVE Method of Mix Design

The SUPERPAVE mix design method, utilising the SUPERPAVE gyratory compactor (SGC), focuses on selecting an aggregate structure that meets specific gradation requirements, ensuring optimal mechanical stability, drainage, and overall performance of asphalt mixtures. Aggregate gradation is engineered to maximise density and optimise voids, following the 0.45 power gradation graph guidelines (ORN 19, Design of Hot Mix Asphalt, 2002).

SUPERPAVE incorporates a Performance-Grade

binder selection based on climatic conditions at the pavement's location. This study utilised locally sourced bitumen (60/70), chosen for its ability to withstand temperature extremes identified through detailed climate analysis. The gradation of heavy traffic load aggregates for the Asphalt Concrete Base Course (ACBC) with a 19.0 mm Nominal Maximum Size (NMS) SUPERPAVE mix was evaluated (Asphalt Institute, 2014). Results in **Figure 6** indicate that the SUPERPAVE recommended gradation passes through the restricted zone, necessitating special compaction precautions during field applications. **Appendix**

Single and Combined grading for ACBC (19.0mm NMS SUPERPAVE) **Source:** Field survey, 2025

D shows detailed grading for SUPERPAVE.

Introducing the gyratory compactor into SUPERPAVE mix design requires the specification of gyratory levels for compacting asphalt trial mixes. These gyration parameters depend on the average design of high air temperature and Equivalent Single Axle Loads (ESALs). This study selected a traffic level exceeding 30 million ESALs, reflecting the conditions of Kenya's international trunk road network, which experiences a warm average air temperature of 35°C. According to (ORN 19, Design of Hot Mix Asphalt, 2002) the designated gyrations levels applied were:

- Ninitial = 9 gyrations
- Ndesign = 125 gyrations
- Nmaximum = 205 gyrations

SUPERPAVE mixes were prepared with blended mineral aggregates, incorporating incremental binder content variations from 4.2% to 6.2% by aggregate weight. Each binder content level was tested using three compacted specimens to ensure consistency.

The resultant data, summarised in **Table 5**, provides insights into critical mix properties, including %Gmm at Ninitial, voids in mix (VIM), voids in mineral aggregate (VMA), voids filled with bitumen (VFB), %Gmm at Nmax, and dust-to-binder ratio, key parameters for achieving optimal binder content (OBC) at 4% air voids. The comprehensive results, applied formulas, and

calculated values are detailed in **Appendix G**. **Figure 7** presents SUPERPAVE design volumetric property curves, illustrating the mix's performance characteristics.

Given Kenya's high rainfall variability, moisture susceptibility was assessed via the AASHTO T-283 test, which measures the mix's ability to retain strength after exposure to moisture (Asphalt Institute, 2014). The stability values of conditioned and unconditioned samples were compared to determine the risk of moistureinduced damage, which influenced binder content selection. The trial asphalt binder content for the five SUPERPAVE blends was estimated at 5.20%, ensuring optimal workability and cost efficiency.

The optimum bitumen content, determined through bitumen binder and aggregate analysis for both Marshall and SUPERPAVE mixes, highlights their unique design approaches, where:

- The Marshall mix required an OBC of 5.88%, emphasising stability and flow, in line with traditional design approaches.
- The SUPERPAVE mix identified an OBC of 5.20%, optimising binder content for mechanical durability, volumetric balance, and minimised excess binder usage.

Aggregate gradation differed significantly between the two methodologies. SUPERPAVE enforces strict controls on aggregate shape, angularity, and gradation, producing highly resistant mixtures

TABLE 5

Compacted specimen volumetric property summary for SUPERPAVE

(Composition of SUPERPAVE Mixtures (Analysis by mass of total mixture)											
Binder	Max.	%Gmm	Volumet	rics at Nde	%Gmm at	Dust						
Content, % Sp.Gr. at Ninitial	at Ninitial	%Gmb	%Air voids (VIM)	%VMA	%VFB	Nmax	Binder Ratio					
4.2	2.398	83.3	2.205	8.1	15.0	46.4	93.4	0.98				
4.7	2.381	84.9	2.247	5.6	13.8	59.4	95.8	0.84				
5.2	2.365	86.2	2.273	3.9	13.3	70.9	97.6	0.74				
5.7	2.348	87.0	2.283	2.8	13.4	79.2	98.7	0.66				
6.2	2.332	88.3	2.293	1.7	13.5	87.4	99.5	0.59				
		<89%		3 - 5%	>13%	65 - 75%	<98%	0.6 - 1.2				

Source: Asphalt Institute, 2014

FIGURE 7 SUPERPAVE design curves Source: Field survey, 2025

that withstand deformation while improving load distribution and rut resistance under heavy traffic conditions. Conversely, Marshall mix design follows conventional gradation specifications without detailed refinements in angularity or sand equivalent values, potentially reducing long-term durability.

SUPERPAVE's advanced performance-driven methodology customises binder content and aggregate structure to enhance asphalt mix resilience across varying environmental and traffic conditions. Enforcing precise volumetric controls ensures sustained pavement durability, minimised maintenance needs, and cost-effective road construction. Its application in Kenya's road infrastructure development can significantly enhance pavement longevity, optimise load resistance, and reduce susceptibility to premature degradation.

Comparative Mechanical Performance Test Results

HMA sample sets were prepared for mechanical performance testing, ensuring compliance with specified gradation requirements for each mix design methodology. The optimum bitumen content selected for the SUPERPAVE mix was 5.20%, while the Marshall mix required 5.88%, reflecting the fundamental methodological differences between these two approaches. Marshall specimens were compacted with 75 blows on both sides to simulate Kenya's heavy traffic loading conditions, while SUPERPAVE specimens underwent 205 gyrations to achieve optimal density and structural integrity. Comprehensive mechanical tests were conducted on Marshall and SUPERPAVE compacted specimens. They strictly evaluated their performance characteristics, including load resistance, durability, and susceptibility to deformation, ensuring reliability under real-world traffic and environmental conditions.

Test Results for ITS & loss of ITS (AASHTO T-283)

The Indirect Tensile Strength (ITS) test evaluates the tensile properties of asphalt mixtures and their resistance to cracking by applying a diametrical compressive load to measure tensile stress at failure. It also assesses moisture susceptibility, simulating environmental effects on pavement durability through wet conditioning (Asphalt Institute, 2014). **Appendix H** details comprehensive results, applied formulas, and calculated values.

a) Performance of SUPERPAVE vs. Marshall Mix Designs Based on ITS Values (Neat Samples)

The ITS test results from **Figure 8** reveal distinct performance differences between SUPERPAVE and Marshall mixes. SUPERPAVE mixtures demonstrated superior initial tensile strength, averaging 943 kPa, compared to 870 kPa for Marshall mixes. This indicates greater cracking resistance under heavy traffic loads.

After moisture conditioning to simulate real-world exposure, SUPERPAVE mixes retained a higher conditioned tensile strength of 851 kPa, while Marshall samples showed a lower average of 769

ITS graph results for SUPERPAVE and Marshall neat samples **Source:** Field survey, 2025

kPa. The ability of SUPERPAVE mixes to maintain tensile strength and post-conditioning signifies their resilience against moisture-induced damage. Additionally, SUPERPAVE mixtures exhibited a lower percentage loss in tensile strength at 9.7%, compared to 11.6% for Marshall mixes, confirming their enhanced moisture resistance and durability.

These findings highlight SUPERPAVE-designed mixes' structural integrity and performance reliability, particularly in regions like Kenya, where variable humidity and rainfall can accelerate moisture-related pavement deterioration. The improved elasticity, durability, and resistance to environmental stresses make SUPERPAVE mixtures well-suited for long-lasting road infrastructure in challenging climatic conditions.

b) Performance of SUPERPAVE vs. Marshall Mix Designs Based on ITS Values (PMA Samples)

Figure 9 of the ITS test reveals significant performance differences. SUPERPAVE PMA samples exhibit superior initial tensile strength, averaging 912 kPa, compared to 780 kPa for Marshall PMA samples. This notable difference confirms that SUPERPAVE mixes provide greater resistance to traffic-induced stresses, making them more suitable for high-load applications.

Moisture conditioning further highlights this performance gap, with conditioned ITS values for SUPERPAVE PMA samples averaging 846 kPa, significantly higher than the 664 kPa observed in Marshall PMA samples. The retention of tensile strength after conditioning demonstrates SUPERPAVE's superior resistance to moistureinduced degradation, demonstrating its durability in environments prone to water infiltration.

The percentage loss in ITS also reinforces the resilience of SUPERPAVE mixes, which recorded a 7.3% reduction compared to a much higher 14.9% loss in Marshall PMA samples. This lower percentage loss further validates SUPERPAVE's ability to mitigate moisture-related distress, ensuring long-term pavement stability. In contrast, Marshall mixes are more susceptible to moisture damage, suggesting that PMA modification may not adequately reinforce their structural integrity.

Overall, SUPERPAVE PMA mixes are highperformance solutions, offering enhanced tensile strength, superior moisture resistance, and longterm durability, making them ideal for demanding traffic and environmental conditions. Meanwhile, Marshall PMA mixes may require additional adjustments to fully capitalise on the benefits of polymer modification. These findings reaffirm that PMA modification is most effective within the SUPERPAVE design framework, particularly for ensuring pavement longevity and resilience in varying climatic conditions.

From Equation 1 in **Appendix E**, the percentage increase in ITS when SBS is incorporated in the SUPERPAVE mixes resulted in a reduction of ITS values rather than an increase, which could be due

ITS graph results for SUPERPAVE and Marshall PMA samples **Source:** Field survey, 2025

to specific mix characteristics or other influencing factors like binder content, aggregate gradation, or moisture susceptibility.

Test Results for Marshall stability and Loss of Marshall stability (AASHTO T 165)

The Marshall Stability Test (AASHTO T 165) evaluates asphalt mix strength and resistance to permanent deformation by measuring the maximum load before failure (stability) and deformation at peak load (flow) (Asphalt Institute, 2014). This ensures pavement durability under varying traffic conditions. Additionally, the moisture susceptibility test assesses stability, retention, and potential for stripping by exposing specimens to repeated moisture conditioning cycles. The comprehensive results, applied formulas, and calculated values are detailed in **Appendix I.**

a) Performance of SUPERPAVE vs. Marshall Mix Designs based on Marshall stability Values (Neat Samples)

Figure 10 demonstrates that SUPERPAVE mixes achieved an impressive average initial stability of 16,933 N, notably exceeding the 15,028 N recorded for Marshall mixes. The greater load-bearing capacity of SUPERPAVE designs indicates their suitability for heavy-duty applications, where superior structural integrity is vital. After moisture

conditioning, SUPERPAVE neat samples retained an average stability of 15,692 N, outperforming the Marshall neat samples, which fell to 14,540 N. The consistent advantage of SUPERPAVE mixes following conditioning highlights their ability to maintain structural integrity over time, minimising performance deterioration under real-world environmental conditions. Moreover, the percentage loss in stability for SUPERPAVE neat samples was 7.3%, significantly lower than the 10.1% observed in Marshall mixes. This reduced stability loss confirms the enhanced resistance of SUPERPAVE mixtures to deformation and moisture-induced distress, ensuring long-term pavement durability in areas with variable climatic conditions.

These findings position SUPERPAVE mix design as a more resilient and reliable solution for asphalt pavement construction, particularly in its neat formulation. Its superior stability, reduced susceptibility to environmental degradation, and enhanced durability make it the preferred choice for high-performance roads. Given the traffic loads and climatic variability in regions like Kenya, adopting SUPERPAVE mixes could significantly enhance pavement longevity and reliability, leading to more sustainable road infrastructure.

b) Performance of SUPERPAVE vs. Marshall Mix Designs based on Marshall Stability Values

Marshall stability graph results for SUPERPAVE and Marshall neat samples **Source:** Field survey, 2025

FIGURE 11

Marshall stability graph results for SUPERPAVE and Marshall PMA samples **Source:** Field survey, 2025

(PMA Samples)

Initial stability values for SUPERPAVE PMA samples averaged 20,148 N, considerably exceeding the 16,252 N recorded for Marshall PMA samples

in **Figure 11**. This demonstrates an enhanced loadbearing capacity that is essential for withstanding high-traffic environments. Following moisture conditioning, the SUPERPAVE mix retained 16,778 N, outperforming the Marshall mix, which AFRIC

HABITA

averaged 12,575 N. This suggests that SUPERPAVE designs provide greater structural integrity and long-term reliability, particularly in challenging environmental conditions. The percentage loss in stability, an essential indicator of resistance to deformation and moisture-induced damage, further demonstrates SUPERPAVE's advantages. The SUPERPAVE PMA mix exhibited a lower percentage loss of 16.7%, compared to 22.6% for Marshall PMA, confirming its superior durability and extended service life.

These findings establish SUPERPAVE mix designs, especially those with polymer modifications, as more resilient and durable asphalt solutions. Their enhanced stability, reduced susceptibility to moisture damage, and cost-effective maintenance make them a strategic choice for pavement construction in Kenya, where climatic variability and heavy traffic loads present significant challenges. Adopting SUPERPAVE can improve pavement longevity, lower maintenance costs, and ensure reliable performance in demanding conditions.

From Equation 2 in **Appendix E**, SBS incorporation significantly improves initial stability for both SUPERPAVE and Marshall mixes, but in conditioned stability, Marshall mixes saw a decline, whereas SUPERPAVE still benefited. This suggests that SBS enhances stiffness but may affect moisture durability in Marshall mixes.

Rut depth test results (EN 12697-22)

This study evaluates the rutting resistance of SUPERPAVE hot mix asphalt (HMA) using the Hamburg Wheel Tracking Test, conducted under BS EN 12697-22 (Bituminous Mixtures. Test Methods for Hot Mix Asphalt Wheel Tracking, 2007). Rutting, a central distress mechanism in asphalt pavements, leads to permanent deformation and reduced longevity, especially under repeated traffic loads. By simulating wheel loading conditions, this test assesses the susceptibility of SUPERPAVE HMA mixtures to deformation.

The investigation examines the rut depth performance of SUPERPAVE HMA prepared with aggregates blended with two distinct bitumen variants: 5.2% neat bitumen (60/70 penetration grade) and 5.2% polymer-modified bitumen (60/70 penetration grade with 4.2% styrenebutadiene-styrene (SBS)). These formulations ensure consistency in testing conditions. The study builds on prior assessments that confirmed the SUPERPAVE mix design's superior performance over the traditional Marshall method, further reinforcing its effectiveness in mitigating rutting and enhancing pavement durability.

Table 6 and Appendix J present rut depthmeasurements for SUPERPAVE HMA samples,providing valuable insights into their deformationresistance under traffic loads. Neat HMA

TABLE 6

Rut depth test results for the SUPERPAVE HMA sample for neat and polymer modified

Bitumen Type Used in the Mix Design	Test Sample for HMA	Measured Rut Depth (mm)	EN 12697-22 Requirement (mm)
5.2% of 60/70 Penetration	Neat 1	9.04	≤ 10.0
Grade Bitumen (neat)	Neat 2	8.42	≤ 10.0
	Neat 3	5.36	≤ 10.0
	Neat 4	7.61	≤ 10.0
Average (Neat)	-	7.48	≤ 10.0
5.2% of 60/70 Penetration	Modified 1	3.88	≤ 5.0
Grade Bitumen + 4.2% SBS	Modified 2	6.22	≤ 5.0
(Polymer modified)	Modified 3	3.43	≤ 5.0
	Modified 4	2.41	≤ 5.0
Average (Modified)	-	3.99	≤ 5.0
0 1:11 2025			

samples exhibit an average rut depth of 7.48 mm, remaining within the EN 12697-22 limit of ≤ 10 mm. However, variations among individual samples reveal differences in performance, with Neat 1 (9.04 mm) and Neat 2 (8.42 mm) showing increased deformation, indicating heightened susceptibility to rutting under heavy traffic conditions. Conversely, polymer-modified HMA samples display superior rut resistance, averaging 3.99 mm below the ≤ 5 mm threshold. Nonetheless, modified 2 (6.22 mm) slightly surpasses the recommended limit, suggesting potential refinements in binder formulation.

These findings exhibit the critical role of polymermodified bitumen in pavement engineering, demonstrating its ability to improve durability and mitigate rutting. SBS-modified mixtures enhance structural integrity under thermal stress, reducing susceptibility to deformation. Optimising binder composition and refining mixing protocols will strengthen pavement resilience, ensuring longterm performance in Kenya's evolving traffic and environmental conditions.

CONCLUSION

Several key conclusions can be drawn based on the study findings.

The commonly used penetration grade asphalt binders in Kenya—35/50, 50/70, 60/70, and 80/100—along with 60/70 modified with SBS, correspond to SUPERPAVE performance grades PG 82-22, PG 64-22, PG 76-22, PG 58-20, and PG 82-22, respectively.

SBS modification significantly enhances the performance of 60/70 penetration grade bitumen by improving elasticity, thermal stability, and overall durability. An optimal SBS concentration of 4.2% achieves a balance between stiffness and flexibility, making the binder particularly suitable for heavy traffic and extreme temperature conditions.

The tested aggregates comply with all relevant design standards, confirming their suitability for pavement construction. They exhibit high resistance to abrasion, crushing, and weathering.

The SUPERPAVE mix design method proves superior to the traditional Marshall design in

key performance aspects. It enables optimised binder usage with a lower asphalt content (5.20% compared to Marshall's 5.88%), which can reduce material costs and the likelihood of binder-related distresses. Additionally, it offers higher Marshall stability and indirect tensile strength, enhancing load resistance and providing superior resistance to rutting, moisture damage, and temperatureinduced distress.

Polymer-modified bitumen further improves rut resistance in SUPERPAVE hot mix asphalt (HMA), outperforming neat bitumen. Although neat HMA meets acceptable performance thresholds, certain variants show higher deformation under heavy traffic. SBS-modified mixtures perform better overall; however, minor inconsistencies in polymer dispersion suggest the need for further optimisation of the binder formulation.

RECOMMENDATIONS

To maximise the economic and functional benefits of SUPERPAVE, the following strategic approaches are recommended:

- Develop comprehensive training programmes for engineers, technicians, and policymakers, focusing on SUPERPAVE principles, material characterisation, and performance-based testing methods. Integrate curriculum modules that emphasise the long-term cost benefits of durable, climate-adaptive pavement designs.
- ii) Implement SUPERPAVE methodologies in select road sections under road agencies such as KeNHA, KeRRA, and KURA, monitoring performance over time. Use these pilot sites as case studies to demonstrate improvements in durability and cost savings, fostering stakeholder confidence.
- iii) Conduct detailed cost-benefit analyses comparing initial construction expenses with long-term savings from reduced maintenance, repairs, and traffic disruptions. Advocate for funding mechanisms and policy incentives supporting advanced pavement design practices, emphasising financial sustainability.
- iv) Develop Kenya-specific binder and aggregate selection standards based on SUPERPAVE's PG system, ensuring materials are optimised

for local climatic conditions. Adapt laboratory testing protocols incorporating indigenous materials, facilitating broader acceptance and confidence in the methodology.

- v) Enforce performance-based testing during material procurement and construction to ensure compliance with SUPERPAVE specifications. Utilise field performance feedback to refine design parameters and material selection, enhancing reliability and efficiency.
- vi) Update national road design standards through the Ministry of Roads and Transport to integrate SUPERPAVE principles. Establish mandates or incentives for incorporating performance-based designs in new infrastructure projects.
- vii) Emphasise that while initial costs may be higher due to sophisticated testing and materials, the extended pavement lifespan and reduced maintenance needs translate into substantial savings. Highlight SUPERPAVE's superior resilience against climate variability and heavy traffic, minimising costly damage and disruptions.
- viii) Partner with international agencies, research institutions, and industry experts experienced in SUPERPAVE implementation to share best practices and technical expertise. Engage in knowledge exchange programmes, adapting global lessons to Kenya's infrastructure needs.

CITED REFERENCES

Asi, I. M. (2007). Performance evaluation of SUPERPAVE and Marshall asphalt mix designs to suite Jordan climatic and traffic conditions. *Construction and Building Materials*, 21(8), 1732–1740. Retrieved from https://doi.org/10.1016/j. conbuildmat.2006.05.036

Asphalt Institute. (2014). *MS-2* Asphalt Mix Design Methods. Asphalt Institute.

Bituminous mixtures. (2007). *Test methods for hot mix asphalt: Wheel tracking* (Withdrawn).

Cominsky, R. J., & National Research Council. (1994). The Superpave mix manual for new construction and overlays. Ronald J. Cominsky.

Garber, N. J., & Hoel, L. A. (2009). *Traffic and highway engineering* (4th ed.). Cengage Learning.

Hu, X., Li, S., Yao, H., Wang, H., Xu, M., Cao, D., Mohd Hasan, M. R., Duan, C., & Zhang, R. (2020). Gradation design and performance evaluation of high viscosity asphalt mixtures. *Advances in Civil Engineering*, 2020(1), 4951951. Retrieved from https://doi.org/10.1155/2020/4951951

Jitsangiam, P., Chindaprasirt, P., & Nikraz, H. (2013). An evaluation of the suitability of SUPERPAVE and Marshall asphalt mix designs as they relate to Thailand's climatic conditions. *Construction and Building Materials*, 40, 961– 970. Retrieved from https://doi.org/10.1016/j. conbuildmat.2012.11.011

Mihretu, M. G., & Zelelew, H. M. (2025). Mapping temperature zone of Ethiopia for binder performance grading system. *Advances in Civil Engineering*, 2025(1), 5584980. Retrieved from https://doi.org/10.1155/adce/5584980

ORN 19. (2002). *Design of hot mix asphalt.* Overseas Road Note, TRL Limited.

Ministry of Transport and Communications. (1987). Road Design Manual, Part III. Nairobi, Kenya.

Ministry of Roads and Public Works. (1986). Standard Specifications for Road and Bridge Construction. Nairobi, Kenya.

Zhao, Y., Gao, Y., Zhang, K., Zhang, Y., & Yu, M. (2021). Establishment of rutting model of wheel-tracking test for real-time prediction of rut depth of asphalt layers. *Advances in Civil Engineering*, 2021(1), 5549891. Retrieved from https://doi. org/10.1155/2021/5549891

Zumrawi, M., & Edrees, S. (2016). Comparison of Marshall and Superpave asphalt design methods for Sudan pavement mixes. *International Journal of Scientific and Technical Advancements*, 2, 29–35.

APPENDIX A Progress photos

Gunny bags stocked with fine and coarse aggregate samples

Sieve analysis for crushed limestone aggregates

Nominal representative sample aggregates used in the HMA mix designs

A drum of 60/70 penetration grade bitumen sample used in the mix designs

Riffled representative nominal aggregates used in the HMA mix designs

Evaluation of bitumen binder using penetration test at 25 $^{\rm 0}{\rm C}$

Manual pre-heating and mixing of measured aggregates and 60/70 penetration grade bitumen

SUPERPAVE Gyratory Compactor equipment used in the SUPERPAVE compaction test

Automatic Marshall compactor Equipment used in the Marshall compaction test

Setting up of HMA sample into the SUPERPAVE Gyratory mould

Double wheel tracker (EN12697-22) used in the Rut depth test

Ongoing test for Marshall stability and dial gauge reading

Ongoing test for Indirect tensile strength and dial gauge reading

SGC and Marshall compactor sample specimen

SUPERPAVE and Marshall sample specimens

Compacted modified HMA in a rectangular slab, ready to be mounted on a double-wheel tracker for a rut depth test

Compacted neat HMA in a rectangular slab ready to be mounted on a double-wheel tracker for a rut depth test

APPENDIX B

DSR test results for sampled neat bitumen binders & modified 60/70 bitumen binders with SBS

Neat 60/70 equivalent to PG 76-22

2		Cohin InuGrade (MASHTO 19	151: C\nogtanDuta\cohinVi	011/J018/1012412(0)122910.00p	- 0
File TEST CONTROL TOOK	i Help				
	0				
Gellant		Test Stebus			
2 Quard Bude			Complax Modulus (kPa)	5.8	
1 Dividentia	nto		Photo Anglo ()	78.5	
4 Filly Brider		Start Moorare	G*/Sn(DuYo) (NPo)	5.76	
S P2V Goods Distance	ion		Show Shore (Po)	100,584	
6 81FD 8nda		in Opping	Strain (%)	1.61	
7 RIFO Gods Datane	งโอา		C) antorognoT	63,10	
		· [NO] ···			
Oporator Notes		Grode Revults			
Soubio:			Grade Temperative + 636		
Tent (User Id :	PG58			
Terminal Lecalion :	load		actional accordant		
			1/2/		
Grados	1/101 60,7 60	Rosult	Fail Pass		
Took Number:	034	G*/Sin(Delta) (kP	a) 0.899 6.76		
Lot Nunber:	004	Notos	4.21 21	I I I I I I I I I I I I I I I I I I I	
Project:	Francis	Phase Angle (*)	26 706		
Notos	Lugopus	Complex Modulus	(kPa) 0.0393 36	X IIIIIIIIII	
		Temporalure (*C)	64.00 67.88	Z//////////	
en na man		Strain (%)	5323.82 1.80	SUUUUUUS	
		Shear Stress (Pa	100 611 100 684	XIIIIIIIIII	
		Frequency (rad/s)	10 (3) 10 03		
<i>9111111111111111111111111111111111111</i>	7///////	Time Of Point	14/12/202 14/12/20		
			111111111		
			MANIE		
			///////////////////////////////////////		
NUUUUU			1111111		
10/8/11/11/11					
			ANNUNCCE.		
aumital Localism			11111	Beach	14/12/20124 12:28
Mast 90/1	00	nt to DC 59, 22	11111110	roody	19120101223
meat 80/1	oo equivale	in to PG 58-22			

8		Bo	hiin TruGrad	e (AASHTO	T315)				- 6 X
File Test Control Tools	Help								
		-Test Status							
File Name Disjinal Brodes Disjinal Grade Dal omi PV// Bindes	nakon	Start Measure	plex Modulu se Angle (*) Sin(Dolta) (KF	s (k₽o) ≥o)	1.89 80.5 1.92 10.03				
5 PV// Grade Deterministics 6 RTFD Bindar 7 RTFD Grade Deterministics		⇒ Bypass She	or Stress (Po	a)	193.686				
		Temperature (°C)	in (%) iperoture ('C)		10.28 46.11				
Operator Notes		Grade Results							
Test £: 0	User Id :	PG64 TruGrad	le Temperat hon Success	ure = 63.6 stul	6°0				
Terminal Location :	003		1	2	3	1	5		
Grade :	Neet 60,103 TFOT	Result	Pass	Pass	Pass	Pass	Fail		
Tenk Number :	010	G*/Sin(Delta) (kPa)	64 3	123.4	94	3.92	1.92		
Lot Number	013	Notes	21			<u> Xallillilli</u>			
Designatio	Fee Olive	Phase Angle (*)	81.6	83.4	850	84.4	805		
Notes :	I zuă olnee	Complex Modulus (kPa) 63.6	282	9.37	39	1 89		
NOIDS .		Temperature (°C)	46.01	52.00	58 02	64.01	70 02		
1		Strain (%)	11 12	9.76	10 09	9 62	10.28		
		Shear Stress (Pa)	7068 46	2264.96	944 434	375.375	193 686		
		Frequency (rad/s)	10 03	10.03	1003	10 03	10.08		
		Time Of Point	13/12/20	2 13/12/20	2 13(12/202	2 13/12/20	210/12/202		
			Asobut To	est Wizarc			X		
		Stinut		Test Co	moleted				
		alimpile							
		Linst	Intes					11	and the stand and the
Jegin / End Test		ter (annumby					Idy		13/12/2024 17:13:33
							9		

Neat 80/100 TFOT equivalent to PG 64-22 Source: Field surveys, 2025

đ	Bo	ohlin TruGrade (AASHTO 1315) - C:\Use	rs\Chief er	ngineer\Desk	ctop\Eng 0	june\Neat (50-70 + 3.7%SBS	gdp	- 0 - 1	
File Test Control Too's	Heip	Tut Orbi	1/1/							
File Name 1 Licesdy Test 2 Diginal Binds: 3 Diginal Binds: 4 PAV Binds: 5 FAV Glade Datemins: 6 BTFD Binds: Operator Notes	radan	Lest Status Stort Measuru C Dyposs Temporature (*C) Temporature (*C) Crado Bosults	Stort Measuru Complex Modulus (kPa) Stort Measuru Grism(Delta) (kPa) Complex Modulus (kPa) Frequency (rad(s) Start Stross (Pa) Start (*) Temperature (*C) [700] Grade Results							
Sample :										
Test <u>≰</u> : 0 —	User ld :	PG88 Failed to 1	ind a fail	temperature	9					
Terminal Location :	930									
Grade .	Neot 60,70 + 3.7%S8S		Dago	Page	Pace	4 Page				
Tank Number :	21 12 2024/A	G*/Sip(Delta) (kPa)	Pass 5.46	2.00	2.09	4.04	-			
Lot Number :	21 12 2024/4	Notes	040	0.03	203	-04				
D. i	21.12.2024(M	Phase Angle (*)	68 1	66.0	461	28.8				
Project :	15 ng Ulune	Complex Modulus (kPa)	506	2 82	218	1 95				
10185 -		Temperature (°C)	70 00	75.99	82.00	88.01				
		Strain (%)	12.29	11.59	12.23	11 43				
		Shear Stress (Pa)	620 33	326 005	263 811	2185				
		Frequency (rad/s)	10.03	10 03	10.03	10.03				
		Time Of Point	21/ 2/20	2 21/12/20	2 21/12/20	2 21/12/20	2			
		Relate Green								
							Communicati	ons Down	21/12/2024 18:53:06	
0 0	6 🔝 👩 🛛	02 😭 🛐 🔊					2 80	1++00000	C IN B ING 1683	

Neat 60/70+3.7% SBS equivalent to PG 82-22

1	Boh	nin TruGrade (AASHTO T315) - CAUs	ers\Chief end	gineer\Desi	ktop\Eng Oj	une\Neat 60	-70 + 4.2%SBS.gdp	- Ö 🗙
de Test Control Tools	s Help							
	0							
FieNore		^ Test Status						
Lennin Ted		Com	plex Modulu	s (kPa)				
2 Original Binder		Photo C*6	in(Delta) (kF	20)				
B Original Grade Determi	indios	Stort Measure Freq	uency (rud/s	5)	////			
1 PA4 Binder		C) Bypnss Sher	ur Stress (Pa)				
5 FX// Grade Determinat	ho ^r	Temperature ('C)	n (%)	IIII has				
S RTFO Binder			heigining (c)	1.111.111				
Doerntor Notes								
Sample :	Inves	Grade Results						
Tost	Userld	- DC00 Failed to	find a fail to	ernoereture				
I BOLK .	200110	PG00						
Terminal Location :	0)3			1.2	10			
Grode	Ned 60/70 + 42%SBS	Result	Pass	Pass	Pass	Pass		
Tonk Number	21.12.2024/8	G*/Sin(Delta) (kPa)	5.52	8 22	3.57	3 84		
Lot Number	21.12.255	Notes		1111771	XIIII			
Lot Number	E JECACIO	Phase Angle (*)	69.0	63.6	45.0	361		
Project	EngOure	Complex Modulus (kPa	1 4 73	311	2.52	2.26		
Notes		Temperature (°C)	70.00	7601	8200	88.00		
		Strain (%)	12:32	17.85	11.65	11.85		
		Shear Stress (Pa)	580 838	365 763	287 838	284.692		
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		Frequency (rad/s)	10.03	10.03	10.03	10.03		
		Time Of Point	21/12/20/	2 21/12/20	2/21/12/20	2 21/12/202		
111			1111					
111			A					
1								
		Fearly Guph						
		TT I ST					Communications Down	21/12/2024 16:53:43
					1.1		9.8031181	ENG MAR
19 0						Lant.		

Neat 60/70+4.2% SBS equivalent to PG 82-22

त्र	Bohi	in TruGrade (AASHTO T315) - C\Users	Chiel engineer/Desktop/Eng Ojune/Neat 60-70 + 4.7%SBS.gdp					
Test Control Tools	s Help							
	Ø	-Tost Status						
File Name		1 Usi Sidius	a Madulus (rDa)					
Linearly Test		Phase						
2 Original Berdes		Stort Mannaka G*/Sin(Della) (kPo)					
3 Original Grade Determ	vitation	- Freque	ncy (rnd/s)					
4 PXX Bender		Bypass Shear S						
5 PAV Grade Deleminal	hen	Temperature (*C) Tempe	rature (°C)					
R (FO Binder		✓ 70 00 ⁺ / ₊						
Operator Notes		Grade Results						
Test # : 0	User Id	PG88 Failed to the	d a fail temperature					
Terminal Location :	C04		1 2 3 4					
Grade :	Nept 60.70 + 47% SBS	Result	Pass Pass Pass					
Tank Number :	21 12 2:240	G*/Sin(Delta) (kPa)	27 6.6 395 288					
Lot Number :	21 12 25 2 40	Notes	21					
Project :	Eng.Quite	Phase Angle (*)	A Los Area (Asta Asta Asta Asta Asta Asta Asta Asta					
Notes :		Complex Modulus (kPa)	A VIL VAJO Z.LL					
		Temperature (°C)	70/00 75,99 82.01 87.99					
		Strain (%)	0.36 2.09 11.90 14.12					
		Shear Stress (Pa)	1 35.2 652.543 396 701 309.768					
		Frequency (rad/s)	0003 1003 1003 1003					
		Time Of Point	21/12/202 21/12/202 21/12/202 21/12/202					
		Results Diaph						
			Communications Down	21/12/2024 16:54:16				

Neat 60/70+4.7% SBS equivalent to PG 82-22 **Source:** Field survey, 2025

APPENDIX C

Grading of aggregates for Asphalt Concrete Wearing Course (ACWC) 0/20mm, Type 1, Binder Course

		Agg	gregates	single-	size and	a combinea gi	rading		
Agg. size	14/20 mm	10/14 mm	6/10 mm	0/6 mm	0/3 mm	Grading Req	uirements		
	Pro	portions	used			Theoretical Curve	Actual grading	Std Spec f 0/20mm,	for ACWC Type I
Sieve(mm)	17%	13%	22%	7%	41%			Min	Max
28	100	100	100	100	100	100		100	
20	98	100	100	100	100	100	100	90	100
14	17	98	100	100	100	86	99	75	95
10	1	8	93	99.5	99.5	69	84	60	82
6.3		26		100	100	51	66	47	68
4		2		89	90	43	51	37	58
2				70	72	34	39	25	43
1				45	50	24	27	18	32
0.425				22	29	13	17	11	22
0.3				17	24	11	14	9	17
0.15				10	17	8	10	5	12
0.075				6	11	5	6	3	7

Source: Kenya's (Standard Specifications for Road and Bridge Construction, MoR&PW, 1986)

APPENDIX D

Grading of aggregates for 19.0 mm NMS SUPERPAVE mix design

					19.0 N	IM NM	S MIX I	DESIG	N				
Agg. Sizes (mm)	14/20	10/14	6/10	0/6	0/3	retical	SUPEI Table 5	RPAVE 5.2 of (A	Specif Asphal	ications (t Institute	Control e, 2014	l points)	s as per
Sieve		Proj	portio	15		lheo							
Size (mm)	18%	18%	21%	43%	0%	ined T ng		Contr points	ol	Cautior	n Zone		MDL
		Gra	dation	18		Comb Gradi	AST <i>N</i> Sieves	min	max	Sieve size	min	max	
25.0	100	100	100	100	100	100	25	100		2.36	34.6	35	100
19.0	95	100	100	100	100	99	19	90	100	1.18	22.3	28	95
12.5	2	74	100	100	100	78	12.5	-	90	0.6	16.7	21	79
9.5	-	3	84	100	100	61	9.5	56	80	0.3	13.7	14	68
4.75	-	-	2	95	95	41	4.75	35	65		PCS		50
2.36	-	-	1	67	71	29	2.36	23	49	Sieve	% pas	sing	36
1.18	-	-	-	42	48	18	-	-	-	4.75	<47>		-
0.600	-	-	-	26	33	11	-	-	-	P 4.75 =	= 44<47	7%,	-
0.300	-	-	-	16	22	7	0.30	5	19	hence a coarse s	dense, graded	mix	12
0.150	-	-	-	10	15	4	-	-	-		<i>,</i>		-
0.075	-	-	-	6	11	3	0.075	2	8				5
MIDX	11.	D	• . т	1 DC	CX D	(D		1	C*				

MLD* - Minimum Design Level, PCS* - Percent Passing Control Sieve

Source: Asphalt Institute, 2014

APPENDIX E

Determination of Combined Specific Gravity, Water Absorption and Max. Specific Gravity for Aggregates for Marshall & SUPERPAVE Method: Volumetric calculations

The following volumetric nomenclature and test method were used in HMA designs for Marshall and SUPERPAVE, as adopted from Table 5.1, page 15 of (ORN 19, Design of Hot Mix Asphalt, 2002).

TABLE 1

Volumetric nomenclature and test methods

	Volumetric nomenclature and tes	t methods		
Component	Volumetric description	Nomenclature	ASTM	AASHTO
Constituents	Bulk Specific Gravity of coarse aggregate	Gca	C127	T85
	Bulk Specific Gravity of fine aggregate	Gfa	C128	T84
	Bulk Specific Gravity of mineral filler	Gf	D854	T100
	Bulk Specific Gravity of total aggregate	Gsb		
	Bulk Specific Gravity of Bitumen	Gb	D70	T228

Component	Volumetric description	Nomenclature	ASTM	AASHTO
Mixed material	Bulk Specific Gravity of compacted material	Gmb	D2726	T166
	Maximum Specific Gravity of loose material	Gmm	D2041	T209
	Air voids	VIM	D3203	T269
	Effective bitumen content	Pbe		
	Voids in mineral aggregate	VMA		
	Voids filled with bitumen	VFB		

TABLE 2

Determination of Specific Gravity for Coarse Aggregates

	Specific Gravity Deter	mination	of Coar	se Aggre	egates as	Per AA	SHTO T8	35
	Aggregate size	14/20	mm	10/14	4 mm	6/10) mm	
	Test No.	1	2	1	2	1	2	
A	Wt. of an oven-dried sample (g)	225	211	238	203	186	233	
В	Saturated Surface Dry (SSD) Wt. in air (g)	231	217	244	208	192	240	
С	Wt. of saturated sample in water	140	131	149	127	117	146	1
	Ca	alculation	IS					Acceptable Range of 2 Results
B.S.	G (Oven based) = A/(B - C)	2.473	2.453	2.505	2.506	2.480	2.479	0.025
	Average BSG (Oven)	2.4	63	2.5	506	2.	479	
B.S.	G (Apparent) = A/(A - C)	2.647	2.638	2.674	2.671	2.696	2.678	0.02
	Average BSG (Apparent)	2.6	42	2.0	573	2.	687	
Sp. C	Gr. (SSD Based) = $B/(B - C)$	2.538	2.523	2.568	2.568	2.560	2.553	
	Average Specific Gravity	2.5	31	2.5	568	2.	557	
Wate	er Absorption = $100*(B-A)/A$	2.667	2.844	2.521	2.463	3.226	3.004	0.25
	Average Water Absorption of Coarse Aggregates	2.	8	2	.5	3	3.1	

Source: Field survey, 2025

TABLE 3

Determination of Specific Gravity for Fine Aggregates

	Specific Gravity Determ	ination o	f Fine Ag	gregates a	is Per AAS	SHTO T84
	Aggregate size	0/6	mm	0/3	mm	
	Test No.	1	2	1	2	
	Mass of Pycnometer + water (g)	2360.5	5 2360.5 2110.0 2110.0		2110.0	
	Mass of Pycnometer +Sample + Water (g)	2635.5	2546.5	2182.0	2187.0	
Α	Oven Dry mass of the sample (g)	437	298	116	122	
В	Apparent weight	275.0	186.0	72.0	77.0	
С	SSD Sample	450	306	120	126	
	Calculation	15				Acceptable Range of 2 Results
B.5	S.G (Oven based) = $A/(C - B)$	2.497	2.483	2.417	2.490	0.032
	Average BSG (Oven)	2.4	1 90	2.4	453	
B.S	S.G (Apparent) = $A/(A - B)$	2.698	2.661	2.636	2.711	0.027
	Average BSG (Apparent)	2.0	579	2.0	574	
Sp.	Gr. (SSD Based) = $C/(C - B)$	2.571	2.550	2.500	2.571	
	Average Specific Gravity	2.5	561	2.5	536	
Wa	ter Absorption = 100*(C-A)/A	2.975	2.685	3.448	3.279	0.31
A	verage Water Absorption of Fine Aggregates	2	.8	3	.4	

TABLE 4

	Aggregate Spe	cific Gravity		
Aggregate	Fraction in the mix for the	Bulk Spec.	App.	WA of
size (mm)	Marshall Method	Gravity (Oven)	Sp. Gr.	Aggregates
14/20	17 (P1)	2.463 (G1)	2.642	2.8
10/14mm	13 (P2)	2.506 (G2)	2.673	2.5
6/10mm	22 (P3)	2.479 (G3)	2.687	3.1
0/6mm	7 (P4)	2.490 (G4)	2.679	2.8
0/3mm	41 (P5)	2.453 (G5)	2.674	3.4
Combined	l Sp. Gr. & Water absorption of	2.470	2.672	3.04
	Aggregates			
		Gsb	Gsa	WA

Combined Sp. Gr. & Water Absorption of Aggregates (Marshall method)

Source: Field survey, 2025

Bulk Specific Gravity of total aggregate (Gsb): Substituting the data from Table 4 above into Equation 5.

$$Gsb = \frac{P1 + P2 + P3 + P4 + P5}{\frac{P1}{G_1} + \frac{P2}{G_2} + \frac{P3}{G_3} + \frac{P4}{G_4} + \frac{P5}{G_5}}$$

Where, Gsb = bulk specific gravity for the total aggregate. P1, P2... P5 = individual percentages by weight of aggregates. G1, G2... G5 = individual bulk specific gravities of aggregates.

$$Gsb = \frac{17 + 13 + 22 + 7 + 41}{\frac{17}{2.463} + \frac{13}{2.506} + \frac{22}{2.479} + \frac{7}{2.490} + \frac{14}{2.453}} = 2.470$$
(Table 4)

A similar formula was used in the determination of Gsa

Combined Sp. Gr. of Aggregates (Gsb) Oven Dry Basis	2.470
Combined Apparent Sp. Gr. of Aggregates (Gsa)	2.672
Effective Sp. Gr. of Aggregates (Gse)	2.549
Sources Field survey 2025	

Source: Field survey, 2025

TABLE 5

Maximum Specific Aggregates (Marshall & SUPERPAVE)

Max.Sp.Gr			
60/70 Penetration Grade Bitumen	4.2%	4.7%	5.2%
Wt sample	515	511	424
PY In H2O	100	102	286.5
PY+Sample in H2O	401.5	398.0	530.5
Max. Specific Gravity of loose material, Gmm	2.412	2.377	2.356
Effective specific gravity of aggregate, Gse	2.566	2.544	2.538
Average Gse		2.549	

TABLE 6

Combined Sp. Gr. & Water Absorption of Aggregates (SUPERPAVE METHOD)

	Aggregate	Specific Gravity		
Aggregate size	Fraction in mix for	Bulk Spec. Gravity	App. Sp.	WA of
(mm)	SUPERPAVE	(Oven)	Gr.	Aggregates
14/20	18 (P1)	2.463 (G1)	2.642	2.8
10/14mm	18 (P2)	2.506 (G2)	2.673	2.5
6/10mm	21 (P3)	2.479 (G3)	2.687	3.1
0/6mm	43 (P4)	2.490 (G4)	2.679	2.8
Combined Sp.	Gr. & Water absorption of	2.486	2.670	2.8
	Aggregates			
		Gsb	Gsa	WA

Source: Field survey, 2025

$$Gsb = \frac{18 + 18 + 21 + 43}{\frac{18}{2.463} + \frac{18}{2.506} + \frac{21}{2.479} + \frac{43}{2.490}} = 2.486 \text{ (Table 6)}$$

A similar formula was used in the determination of Gsa

Combined Sp. Gr. of Aggregates (Gsb) Oven Dry Basis	2.486
Combined Apparent Sp. Gr. of Aggregates (Gsa)	2.670
Effective Sp. Gr. of Aggregates (Gse)	2.549

Source: Field survey, 2025

The average Gse of 2.549 was used in Marshall and SUPERPAVE mixed material volumetric calculations since the same aggregate source was used.

ITS and Stability Calculations

To calculate the percentage increase in ITS when SBS is incorporated, we use the formula:

$$Percentage Increase = \frac{ITS with SBS - ITS without SBS}{ITS without SBS} x 100\%$$
Equation 1

Applying this to data from Figures 8 and 9:

Initial ITS:

- SUPERPAVE: $\frac{912 - 943}{943} \times 100\% = -3.29\% \text{ (A slight decrease)}$ • Marshall:
- Marshall: $\frac{780 - 870}{870} \times 100\% = -10.34\%$ (A decrease)

Conditioned ITS:

- SUPERPAVE: $\frac{846 - 851}{851} \times 100\% = -0.59\%$ (A slight decrease)
- Marshall: $\frac{664 - 769}{769} \times 100\% = -13.66\% \text{ (A decrease)}$

To calculate the percentage increase in stability when SBS is incorporated, we use the formula:

 $Percentage\ Increase = \frac{Stability\ with\ SBS-Stability\ without\ SBS}{Stability\ without\ SBS}\ x\ 100\% \qquad Equation\ 2$

Applying this to data from Figures 10 and 11:

Initial Stability Increase

- SUPERPAVE $\frac{20,148 - 16,933}{16,933} \times 100\% = 18.97\%$ (Significant increase)
- Marshall $\frac{16,252 - 15,028}{15,028} \times 100\% = 8.14\% \text{ (Moderate increase)}$

Conditioned Stability Increase

- SUPERPAVE $\frac{16,778 - 15,692}{15,692} \times 100\% = 6.92\% \text{ (Slight increase)}$
- Marshall $\frac{12,575 - 14,540}{14,540} \times 100\% = -13.50\% \text{ (Decrease)}$

The preceding appendices (F, G, H, and I) contain formulas and detailed test results for the HMA specimens obtained by the Marshall and SUPERPAVE methods, calculated using Excel spreadsheets.

APPENDIX F

Detailed observations and results of the Marshall design for the AC Trial

The detailed calculations for the Marshall trial mix were guided by (ORN 19, Design of Hot Mix Asphalt, 2002) and (Asphalt Institute, 2014).

Marshall C	Compacti on		75 Blows			Grade Bitun	1en			0//09			Project	Msc Civil	Eng.	
Specific G	ravity of Bi	tumen, G b	1.02			Absorbed A	C of Aggregat	e					Location	MITRD, N	airobi	
Bulk S.G A	Aggregate, C	Gsb	2.47			Effective S.	G. Aggregates,	Gse		2.549	0	0	Date	Dec, 2024		
		V	Mass, gram:	S								5	ita bility			
0%	Spec. No.	In Air	In Water	Sat.	Bulk	Bulk S.G.	Max. S.G.	₩UTM	%VMA	%VFB	Reading, N	Ring	Normal	Vol.	Correc	Flow
Bitumen				Surface	Volume,	Specimen	(Loose Mix)					Factor	Stability,	Correcti	ted	(0.25
by wt. of				Dry In Air	3	I							kN	on Ratio	Stabilit I-N	(uuu
111Y, FU						Gmb	Gmm								y, M.Y	
a	q	J	p	e	f	ы	Ч	k	1	a	n	0	a	0	r	s
					р-э	a (1)/o	100\{(Ps/Gse)+(Ps/Gb	-mmÐ)(dmÐ 100*{(Յmm-	(daĐ\a [*] dmĐ)-001	-AMV)}*001 {AMV\(MIV			o _* u		b _* d	
4.2	A	1144	630	1154	524	2.183	2.398				1000	0.0125	12.5	96.0	12.0	2.5
4.2	ы	1160	642	1168	526	2.205	2.398				1110	0.0125	13.9	96.0	13.3	3.0
4.2	U	1136	631	1146	515	2.206	2.398				1400	0.0125	17.5	125	21.9	2.0
Average						2.198	2.398	8.3	14.7	43.5	1170				15.7	2.5
4.7	А	1129	630	1137	507	2.227	2.381				980	0.0125	12.3	1.04	12.7	2.7
4.7	В	1132	633	1134	501	2.259	2.381				1160	0.0125	14.5	1.04	15.1	2.5
4.7	U	1148	642	1150	508	2.260	2.381				1580	0.0125	19.8	1.04	20.5	3.1
Average						2.249	2.381	5.6	13.2	57.9	1240				16.1	2.8
5.2	А	1145	632	1151	519	2.206	2.365				945	0.0125	11.8	1.00	11.8	2.0
5.2	ы	1149	584	1154	570	2.016	2.365				1080	0.0125	13.5	0.86	11.6	2.2
5.2	U	1040	579	1044	465	2.237	2.365				850	0.0125	10.6	1.19	12.6	2.1
Average						2.221	2.365	6.1	14.7	58.9	958				12.0	2.1
5.7	A	1142	634	1146	512	2.230	2.348				945	0.0125	11.8	1.00	11.8	2.3
5.7	В	1141	636	1142	506	2.255	2.348				1050	0.0125	13.1	1.04	13.7	2.4
5.7	С	1141	636	1143	507	2.250	2.348				850	0.0125	10.6	1.04	11.1	3.2
Average						2.245	2.348	4.4	14.3	69.3	948				12.2	2.6
6.2	Α	1150	646	1152	506	2.273	2.332				1060	0.0125	13.3	1.04	13.8	2.6
6.2	В	1136	632	1137	505	2.250	2.332				865	0.0125	10.8	1.04	11.2	3.0
6.2	U	1144	636	1146	510	2.243	2.332				750	0.0125	9.4	1.00	9.4	3.1
Average						2.255	2.332	3.3	14.4	77.0	892				11.5	2.9
Source:	: Field sı	urvey, 20.	25													

APPENDIX G

Detailed observations and results of the SUPERPAVE design for the AC Trials

		oitsA 9d4\t2uU			0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9			
3.0		AFB	(%)		26.9	27.5	28.0	40.0	42.3	44.4	46.4	51.7			
	ß	T TA T	(%)		23.4	23.0	22.7	17.0	16.3	15.6	15.0	13.7			
0.075 (S	d Valu	¥ИЛЛ ВД	(%)		1.1	16.7	16.3	10.2	9.4	8.7	8.1	6.6			
0	Average) (%)		82.9	83.3	83.7	89.8	90.6	91.3	91.9	93.4			
8		Corrected Bulk Density	g/cm ³		1.988	1.998	2.007	2.153	2.173	2.190	2.205	2.239			1.07
Spec Dia]		oinsЯ əd¶thauQ		∩/S =d	0.9	0.9	0.9	0.9	0.9	0.9	6.0	6.0			iy at N _{design}
1.014		AFB	(%)	M\(J-M)*oot =N	26.9	27.5	28.0	40.0	42.3	44.4	46.4	51.7			Densit
		ΨWΛ	(%)	Я\{A-001)*L}-001 = М	23.4	23.0	22.7	17.0	16.3	15.6	15.0	13.7			netric
E a	1890.0	${}_{\rm B}{ m V}$	(%)	X-001=J	17.1	16.7	16.3	10.2	9.4	8.7	8.1	6.6			Geon
	ç	uuuĐ%	(%)	Ω/Γ¥οοτ=)	82.9	83.3	83.7	89.8	90.6	91.3	91.9	93.4			at N _{des}
3.229	ken(g)	Density Corrected Bulk	g/cm³	ן = G*H	1.988	1.998	2.007	2.153	2.173	2.190	2.205	2.239			ensity/a
_	Wî ta	Correction Factor		н	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	2.092	2.239	Bulk D
P _{be} (U		Geometric Density	g/cm ³	e=C\F	1.858	1.866	1.875	2.011	2.030	2.046	2.060	2.092			Actual
		əmuloV	٤m	(مەمى*ج)/∃* ² 8*44.	1017.4	1012.7	1007.9	939.6	931.0	923.9	917.7	903.5	Ndesign	ត	
2.486	4.2B	Haight	(mm)	Э	129.6	129.0	128.4	119.7	118.6	117.7	116.9	115.1	msity at	r at N _{desi}	ctor H =
Gsb (R)	Specimen #	Gyrations/cycles	No.		~	6	10	60	80	100	125	205	Geometric De	Actual Density	Correction Fa
549															_
Gse (Q)	_														
4.2 Max. Sp. 2.398 Gr. (D)															
Pb - A													 		

AFRICA
HABITAT
REVIEW 20(2) 2025

		Т					~	~	~	~	~	~	~	~				
				Oust/Pbe Ratio			3.0	0	0	0.5	0.5	0	0	0	_			
	3.0			ΛĿB	(%)		32.1	32.9	33.6	49.9	53.6	56.5	59.4	66.6				
	ŝ		ន	VINA	(%)		22.9	22.5	22.1	16.1	15.1	14.5	13.8	12.5				
	 P _{0.075} ()		d Val	eΛ	(%)		15.6	15.1	14.7	8.1	7.0	6.3	5.6	4.2				
	100		Average	աա-շ%	(%)		84.4	84.9	85.3	91.9	93.0	93.7	94.4	95.8				
				Corrected Bulk Density	g/cm ³		2.010	2.021	2.031	2.189	2.214	2.232	2.247	2.282				1.07
- 31	Spec Dia]			oitasi ədqitauQ		∩/S =d	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8				y at N _{design}
12697	1.014			AFB	(%)	M\(J-M)*001 =V	32.3	33.1	33.8	49.9	53.7	56.6	59.5	66.7				Densit
YEN				AMV	(%)	<u></u> Я((A-001)*L)-001 = M	22.8	22.4	22.0	16.0	15.1	14.4	13.8	12.5				netric.
RT B	P _{ba} (T)		1880.0	вУ	(%)	X-001=J	15.4	15.0	14.6	8.0	7.0	6.3	5.6	4.2				Geot
REPO			ų	աաը%	(%)	Ω\L*οοτ=)	84.6	85.0	85.4	92.0	93.0	93.7	94.4	95.8				at N _{des}
TEST	3.734		ken(g)	Corrected Bulk	g/cm ³	1 = C∗H	2.014	2.025	2.035	2.190	2.215	2.232	2.248	2.282				ensity/
TIES			Wt tal	Correction Factor		н	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	2.142	2.282		Bulk D
OPER	0) 10			Geometric Denaity	g/cm ³	d=C/F	1.890	1.901	1.910	2.056	2.079	2.095	2.110	2.142				Actual
RIC PR				əmuloV	cm ³	F=3,14*B²+£/(4*1000)	994.6	989.1	984.4	914.5	904.3	897.3	891.0	877.6	N _{design}	μĎ		
UMET	2.486		4.7B	Height	(mm)	Э	126.7	126.0	125.4	116.5	115.2	114.3	113.5	111.8	ensity at	y at N _{des}		ctor H=
ETHOD VOI	Gsb (R)		Specimen #	dyrations/cycles			8	6	10	60	80	100	125	205	Geometric D	Actual Densit	1.06	Correction F2
IN XX				oʻdafi ədq'tanQ		U\2 =9	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8				
ATOF	2.549			AFB	(%)	Μ∜(J-M)*οοτ =Ν	31.8	32.6	33.3	49.8	53.5	56.4	59.3	66.5			N _{de sign}	
VE GYR	3se (Q)		1880.0	AMV	(%)	Я\(A-ooı)*L)-ooı = M	23.1	22.7	22.3	16.1	15.1	14.5	13.9	12.6			Density at	
ERPA				${}_{\rm B}{\rm V}$	(%))-ooτ=J	15.7	15.3	14.9	8.1	7.0	6.3	5.6	4.2			letric I	
SUP				աաე%	(%)	Ω/Γ*οοτ=)	84.3	84.7	85.1	91.9	93.0	93.7	94.4	95.8			Geom	
	2.381		Wt taken(g) - C	Corrected Bulk Density	g/cm ³	1 = C∗H	2.006	2.018	2.027	2.189	2.214	2.231	2.247	2.281	2.142	2.281	Density/at N _{desig}	
ļ	Sp.			Correction Factor		Н	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06			1 Bulk	
	Max. ; Gr. (D			Geometric Denaity	g/cm ³	e=C/F	1.884	1.895	1.904	2.056	2.079	2.095	2.110	2.142	-		Actua	
	4.7			əmuloV	cm	E=3.14*8²*E/(4*1000)	7.799	992.2	987.5	914.5	904.3	897.3	891.0	877.6	tt N _{design}	ugisi		
	<u> </u>		4.7A	Height	(mm)	Э	127.1	126.4	125.8	116.5	115.2	114.3	113.5	111.8	mity a	v at N _{de}	ctor H	
	Pb - A		Specimen #	Gyrations/cycles			8	6	10	60	80	100	125	205	Geometric De	Actual Density	Correction Fa	

			Dust/Pbe Ratio			0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7				
	3.0		AFB	(%)		37.1	38.1	39.0	59.3	63.8	67.3	70.9	79.7				
	6	les	WIAI A	(%)		22.7	22.3	21.8	15.5	14.6	13.9	13.3	12.0				
-	P _{0.075} (5	ed Valu	ννατ εΛ	(%)		14.3	13.8	13.3	6.3	5.3	4.5	3.9	2.4				
	100	Average	աաշ%	(%)		85.7	86.2	86.7	93.7	94.7	95.5	96.1	97.6				
	Ŗ		Corrected Bulk Density	g/cm ³		2.028	2.039	2.050	2.215	2.240	2.257	2.273	2.307				
-31	Spec Dia-																
12697	1.014																
REPORT BY EN	$P_{ba}(T)$																
S TEST I	4.239																
UC PROPERTIE	$\mathbf{P}_{\mathrm{be}}\left(U\right)$																
LUMETH	2.486																
IETHOD VO	$Gsb\left(\mathbf{R}\right)$															1.06	
RY M	6		oins A a d'Arau D	(∩/S =d	0.7	0.7	0.7	8 0.7	8 0.7	8 0.7	0.7	7 0.7	 		5	
RATC	2.54		AFB	%)	M\(J-M)*oo1 =V	37.:	38.	39.(59.	63.5	67.	70.5	79.	 		at N _{desi}	
AVE GY	Gse (Q)	1940.0	AMV	(%)	Я{(A-oot)*L)-oot = M	22.7	22.3	21.8	15.5	14.6	13.9	13.3	12.0			Density :	
PERP			вУа	(%) (Х-001=J	7 14.3	2 13.8	7 13.3	7 6.3	7 5.3	5 4.5	1 3.9	5 2.4			metric	
ns		c	աաĐ%	%)	Ο\L*οοτ=)	85.	86.	86.	93.	94.	95.	96.	97.(sign Geo	
	2.365	Wt tak en(g) -	Corrected Bulk Density	g/cm ³	1 = C*H	2.028	2.039	2.050	2.215	2.240	2.257	2.273	2.307	2.183	2.307	Density/at N _{de}	
	Sp.		Correction Factor		Н	1.06	1.06	1.06	5 1.06	1.06	5 1.06	1.06	3 1.06			al Bulk	1
	Max. Gr. (I		Geometric Density	g/cm	d/⊃=9	1.915	1.925	1.940	2.096	2.120	2.136	2.151	2.183	 c		Actua	
	5.2		əmuloV	cm³	E=3.14*8²*E/(4*1000)	1011.1	1005.6	1000.1	925.5	915.3	908.2	902.0	888.6	tt N _{desig}	esign	11	
		5.2A	Height	(mm)	Э	128.8	128.1	127.4	117.9	116.6	115.7	114.9	113.2	mity a	v at N _{de}	ctor H	•
	Pb - A	Specimen #	Gyrations/cycles			8	6	10	60	80	100	125	205	Geometric De	Actual Density	Correction Fa	,

Parapara, Osano, Gichaga	& Okari / Afrio	a Habitat Review	20(2) (2025) 3258-3299
--------------------------	-----------------	------------------	-------------	-------------

			oitsA 9dT\t2uU			0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6			
	3.0		AFB	(%)		41.1	42.2	43.2	65.9	71.1	74.9	79.2	89.3			
		8	1.7147 A	(%)		23.0	22.5	22.1	15.7	14.7	14.1	13.4	12.1			
Ì	0.075 (S	d Valu	уллл ид	(%)		13.5	13.0	12.6	5.4	4.3	3.5	2.8	1.3			
		verage) (%		6.5	1.0	7.4	04.6	5.7	6.5	7.2	8.7			
l	10	A	աա-9%				~	~	0,	0	5	5	5			
	ę.		Corrected Bulk Density	g/cm ³		2.030	2.043	2.054	2.223	2.249	2.265	2.283	2.318			
- 31	Spec Dia-															
12697	1.014															
3Y EN																
ORTH	P _{ba} (T															
I REP																
S TES	4.744															
RTIE	5															
ROPI	P _{be} ((
RICH																
UME	2.486															
D V OI	2															
OHLE	Gsb (F															1.06
RY MI			oitts A ad Atau O		∩/s =d	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6			
VATO	2.549		AFB	(%)	M\(J-M)*001 =V	41.1	42.2	43.2	65.9	71.1	74.9	79.2	89.3			. N _{de sign}
E GYF	e (0)	0.000		(%)	Я{(A-оот)*L)-оот = М	23.0	22.5	22.1	15.7	14.7	14.1	13.4	12.1			nsity at
RPAV	°5	2	¥WΛ ΈΔ	(%)-001=7	3.5	3.0	2.6	5.4	1.3	3.5	2.8	3			tric De
SUPE			um5%) (%)	Ω/Γ*οο <i>τ</i> =)	86.5 1	87.0 1	87.4 1	94.6	95.7	96.5	97.2	98.7			Geome
	2.348	Wt taken(g) - C	Согтессей Вијк Denaity	g/cm ³	ן = G*H	2.030	2.043	2.054	2.223	2.249	2.265	2.283	2.318	2.187	2.318	Density/at N _{design}
ļ	sp.		Correction Factor		Н	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06			l Bulk
	Gr. (D		Geometric Density	g/cm ³	e=C\E	1.916	1.927	1.937	2.097	2.121	2.137	2.154	2.187	ç		Actua
	5.7		amuloV	cm ³	F=3.14*B²*E/(4*1000)	1044.1	1037.8	1032.3	953.8	942.8	935.7	928.7	914.5	at N _{desig}	esign	
		5.7A	tılgiəH	(mm)	Э	133.0	132.2	131.5	121.5	120.1	119.2	118.3	116.5	ensity :	y at N ₆	ictor H
	Pb - A	Specimen #	Cyrations/cycles			8	6	10	60	80	100	125	205	Geometric D	Actual Densit	Correction Fa

				oitsA 9dA\t2uU			0.572	0.572	0.572	0.572	0.572	0.572	0.572	0.572					
		3.0		AFB	(%)		41.97	43.15	44.14	69.75	75.53	80.31	85.10	95.56					
		S)	ues	VWA	(%)		21.136	20.680	20.310	13.899	12.988	12.319	11.716	10.600					
		P _{0.075} (ed Val	۴A	(%)		12.2	11.7	11.3	4.1	3.1	2.4	1.7	0.5					
		100	Averag	աաՅ%	(%)		87.8	88.3	88.7	95.9	96.9	97.6	98.3	99.5					
		8		Corrected Bulk Density	g/cm ³		2.047834486	2.059693164	2.069284727	2.235841688	2.25952345	2.276889741	2.292552093	2.3215				1.04	
-31	5	Spec Dia-		опяя эадияла		∩/S =d	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6				v at N _{design}	
12697		1.014		AFB	(%)	M{(J-M)*oot =N	38.1	39.2	40.2	66.0	72.0	77.3	82.6	95.0				Density	
YEN				AMV	(%)	Я\(A-001)*L)-001 = M	19.4	18.9	18.5	12.2	11.3	10.6	10.0	8.8				letric I	
DRT B		P _{ba} (T)	2000.0	вУ	(%)	X-001=J	12.0	11.5	11.1	4.1	3.1	2.4	1.7	0.4				ien Geon	
REPO			ں י	աաը%	(%)	Ο\L*οοτ=Χ	88.0	88.5	88.9	95.9	96.9	97.6	98.3	99.6				at N _{de}	
TEST		5.249	ken(g)	Density Corrected Bulk	g/cm ³	η=G*Η	2.053	2.064	2.074	2.236	2.259	2.276	2.292	2.322				ensity/	
TIES			Wt ta	Correction Factor		н	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	2.227	2.322		Bulk D	
OPER		P _{be} (U)		 Geometric Density	g/cm ³	d=C/F	1.969	1.980	1.989	2.145	2.166	2.183	2.198	2.227				Actual	
RIC PR				əmuloV	رس س	F=3.14*8²*€/(4*1000)	1015.8	1010.3	1005.6	932.6	923.2	916.1	909.8	898.0	N _{design}	5			
UMET		2.486	6.2B	tdgieH	(mm)	Э	129.4	128.7	128.1	118.8	117.6	116.7	115.9	114.4	msity at	v at N _{desi}		ctor H =	
ETHOD VOL		Gsb (R)	Specimen #	Gyrations/cycles			8	6	10	09	80	100	125	205	Geometric De	Actual Densit	1.05	Correction Fa	
RY M				Dust/Pbe Ratio		∩/S =d	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6					
ATO		2.549		AFB	(%)	M{(J-M)*oo⊥ =N	45.9	47.1	48.1	73.5	79.0	83.3	87.6	96.1			Ndesien		
VE GYF		Gse (Q)	2000.0	AMV	(%)	Я\(A-oot)*L)-oot = M	22.9	22.4	22.1	15.6	14.7	14.1	13.5	12.4			Density at		
ERP				вУ	(%)	X-001=J	12.4	11.9	11.5	4.1	3.1	2.3	1.7	0.5			netric]		
SUP				աաე%	(%)	Q\L*οοτ=)	87.6	88.1	88.5	95.9	96.9	97.7	98.3	99.5			Geon		
		2.332	Wt taken(g) - C	Corrected Bulk Density	g/cm ³	Н*Э = Г	2.043	2.055	2.065	2.236	2.260	2.278	2.293	2.321	2.210	2.321	t Density/at N _{desi}		
		Sp.		Correction Factor	~	н	5 1.05	1.05	5 1.05	3 1.05	21.05	3 1.05	1.05	1.05			al Bulk)25
		Max. Gr. (I		Geometric Density	g/cm	e=C\E	1.945	1.957	1.966	2.128	2.152	2.168	2.183	2.210			Actus		y, 20
		6.2		əmuloV	cm	(م*1000) =3.14*5 ² *∃((1028.4	1022.1	1017.4	939.6	929.4	922.4	916.1	905.1	at N _{desig}	esign	Ш		surve
	'		6.2A	Haight	(mm)	Э	131.0	130.2	129.6	119.7	118.4	117.5	116.7	115.3	ensity a	y at N _{de}	ctor H		ield
		Pb - d	Specimen #	Gyradon <i>sle</i> y cles			8	6	10	60	80	100	125	205	Geometric De	Actual Density	Correction Fa		Source: F

APPENDIX H

ITS and Loss of ITS (AASHTO T283) Test Results

\bigcirc											
\smile											
	MI	NISTRY 0	OF ROAL	DS AND TR	ANSPORT						
	MATERIA	LS TEST	ING & R	RESEARCH	DIRECTOR	ATE					
	MOISTU	RE SUSC	EPTIBII	JTY TEST	-AASHTO T	283					
CLIENT'S NAME: Eng 1	V.O. Par Pura										
PROJECT NAME: Thesis	project for Muste	5.05	Scier	ice in	ciul E	ngine	eng				
JOB DESCRIPTION: SUPE	RPAVE specimen mou	udee	ct :	205 64	rations	CN	eat?				
SAMPLE DESCRIPTION: A	ggregates \$ and 60/2	· pene	ent	ion Gr	ade bi	tunt	en.				
DATE RECEIVED: 09/1	2/2024										
MATERIAL SOURCE : Ag	gregates from katan	1 Que	my	in mad	iskos ci	sunty	8 31-	tumen	from	n weal	Suppli
DATE TESTED: 11/02/2	102.95		1				LABOR/	ATORY:	-		
		Г	IS TEST	RESULTS							
TEST DESCRIPTION	FORMULAR		UNCONI	DITIONED	SET	C	ONDITI	ONED SE	Т	AVERAGE	REMARKS
			1	ST SET			2ND	SET			
Sample ID		NI	N2	N3	NY	NS	NG	N7	N8		
Diameter, mm	Dia	100	100	100	100	100	100	100	100		
Sample Height, mm	Ht	67.170	65.694	+65.662	65.000	65.703	65.49	3 66 367	- 66.08	/	
Wt. in air, g	Α	1085	1049	10,50	1048	1050	1048	1056	1054		
Wt. in water, g	В	607	586	587	590	589	589	593	593		
SSD Wt., g	С	1088	1054	1055	1052	Toes	1053	1063	1061		
Volume, cm3	D=C - B	481	468	468	462	466	464	470	468		
Water Absorption	E=100*[(C-A)/D]	0.62	1.07	1.07	0.87	1.07	1.08	1.49	1.50		
Bulk Spec. Gravity, Gmb	F = A/D	2.256	2:241	2:244	2:268	2.253	2:259	2.247	2:252		
Max. Spec. Gravity, Gmm	G	2.381	2:381	2.381	2381	2:381	2381	234	2.381		
% air voids	H = 100*[1-(F/G)]	5.262	5.861	5.771	4.729	5367	5.140	5.636	5.412	5.406	6' - 8
Maximum Load, kN	K	10,007	7.045	10.559	8:733	7.856	8.607	7.24	9,903		
ITS (Dry), kPa	L = (2*K*1,000,000)/(3.142*Ht*Dia)	949	687	1024	856				1.1	879	
ITS (Wet) kPa	M = (2*K*1,000,000)/(3.142*Ht*Dia)					762	837	695	955	812	
Tensile Strenght Ratio (TSR)	N = 100*M/L								15	92:4	≥80%
ITS Loss (%)	N-100%									7.6	≤20%
Tested by: Morarete	Male				Checked by:	Eng: N	1.0.0	cher	ma	PIAT	-
Date: 11/02/2025					Date:	102/20	25			Jul	

Source: Field survey, 2025

2

		MIN	ISTRY OF F	ROADS AN	D TRANSPOL	RT					
		MATERIA	LS TESTING	G & RESEA	RCH DIREC	TORATE					
		MOISTU	RE SUSCEPT	TIBILITY 1	EST -AASH	TO T283					
CLIENT'S NAME: Eng	NO. Dallara										
PROJECT NAME: Thes	is project for M.	aster of	scie	a th	Civil	Engine	entig				
JOB DESCRIPTION: MC	irshall spelimen	mol	I ded a	atto	5 51000	i J'WA	at				
SAMPLE DESCRIPTION: A	gare gater & 60/2	to pere	tontiva	an	de Bat	umen	.,				
DATE RECEIVED	12/2024			9							
MATERIAL SOURCE	queautes from legta	marc	myin	mbi	ongo 8	Bitum	en tro	m Le	cal S	uppher	(
DATE TESTED:	12825)		0		LABORATO	RY:	-		
	, , ,		ITS T	EST RESU	LTS						
TEST DESCRIPTION	FORMULAR		UNCONDITI	IONED SET	Г		CONDITIO	NED SET		AVERAGE	REMARKS
			1ST :	SET			2ND 9	SET			1
Sample ID		Ng	NIO	NI	NIZ	NI3	NIF	NK	NIG		
Diameter, mm	Dia	101	101	101	101	101	101	101	101		
Sample Height, mm	Ht	64	63	65	65	64	64	63	63		
Wt. in air, g	A	1136	1130	1135	1137	1137	1143	1143	1142		
Wt. in water, g	В	639	634	633	635	634	629	643	6309		
SSD Wt., g	С	1141	1132	1138	1141	1141	1146	1146	1144		
Volume, cm3	D=C - B	502	498	505	506	507	607	503	505		
Water Absorption	E=100*[(C-A)/D]	1.00	0.40	0.59	0.79	0.79	0.59	0.60	040		
Bulk Spec. Gravity, Gmb	F= A/D	2:263	2:269	2.248	2247	2:243	2:254	2:272	25261		
Max. Spec. Gravity, Gmm	G	2.381	2:381	2.281	2:381	2:381	2.381	2:381	2.381		
% air voids	H = 100*[1-(F/G)]	4458	4.701	5.606	5.626	5-813	5-316	4.563	5.024	5-201	6' - 8
Maximum Load, kN	K	9.735	8.306	9,455	8.888	2.807	6.592	10:465	8-875		
ITS (Dry), kPa	L = (2*K*1,000,000)/(3.142*Ht*Dia)	959	831	917	862	,	- / -		0-15	892	
ITS (Wet) kPa	M = (2*K*1,000,000)/(3.142*Ht*Dia)	11		111		769	649	1047	888	238	
Tensile Strenght Ratio (TSR)	N = 100*M/L									94.0	≥80%
ITS Loss (%)	N-100%	L								6.0	≤20%
Tested by: Mare	margerate				Checked by:	Bg'N	·O. Per	h Pione	3		
Date: 18/02/-	2025				Date: 1	102/20	251	1			
AA S A					10		0.	+			
							CAN	#			
							-000	C			

3

	-	MIN	ISTRY OF F	ROADS ANI) TRANSPOR	RT					
		MATERIA	S TESTING	& RESEA	RCH DIREC	TORATE					
		MOISTUR	E SUSCEPT	TIBILITY T	EST -AASH1	TO T283					
LIENT'S NAME: Engr	N.O. Darbourg.	120.20104						C			
PROJECT NAME: The	is protect for me	nster ch	SCIA	encert	n ciu	1 Eng	heesh	9			
OB DESCRIPTION: Sur	ERPAUE SPECIME	n noary	ded a	1 20	8 947	3 tions	Polyn	eer n	where	Jusing	4.29.5
AMPLE DESCRIPTION:	Aggregatis 8 60	120 Per	pent	vn gr	a B	tymen	(1).	, .	q		
DATE RECEIVED: 09/	phone +			. 0						11.000	16 mil 1
ATERIAL SOURCE AG	gregater from Ko	tan a	umy	inmlo	longo 2	8 Bitim	en trà	mb	cal si	porier	-
ATE TESTED: 1102	2025	. 1)				LABORATOR	RY: BN	men		
,			ITS T	EST RESU	LTS				11221		
TEST DESCRIPTION	FORMULAR	L I	UNCONDITI	ONED SET			CONDITIO	NED SET		AVERAGE	REMARKS
			1ST 3	SET			2ND 5	SET			
ample ID		55	56	57	58	51	52	53	54		
iameter, mm	Dia	100	100	100	100	100	100	100	100		
ample Height, mm	Ht	66.039	65.840	68-850	65,464	641586	66.216	65.341	65.961		
√t. in air, g	- A	1061	1058	1057	1060	1038	1070	1053	1060		
Vt. in water, g	В	592	592	594	594	582	600	590	594		
SD Wt., g	С	1064	1062	1064	1066	1043	1075	1059	1066		
olume, cm3	D=C - B	472	470	470	472	461	6475	469	472		
Vater Absorption	E=100*[(C-A)/D]	0:64	0.85	1:49	1.27	1.004	1.05	1.28	1:27	1. D. 1. C. 1.	
ulk Spec. Gravity, Gmb	F= A/D	21248	2.251	2.249	2.246	2:282	2.253	2.245	20246		
fax. Spec. Gravity, Gmm	G	2.381	2:321	2:381	2381	2:381	2:381	2381	2:381	100 m 10	
air voids	H = 100*[1-(F/G)]	5.591	5.457	5.547	5.680	5.434	5.391	5.203	5.680	5:564	6' - 8
faximum Load, kN	K	8.568	8.988	8.845	10:402	8.729	9:038	90536	8.354	/	
IS (Dry), kPa	L = (2*K*1,000,000)/(3.142*Ht*Dia)	826	870	856	1012		1 -	10-	/	891	
TS (Wet) kPa	M = (2*K*1,000,000)/(3.142*Ht*Dia)	-				861	869	930	807	867	
ensile Strenght Ratio (TSR)	N = 100*M/L						/	12	-	97.3	≥80%
											-200/

Source: Field survey, 2025

(H)											
		MIN	ISTRY OF F	ROADS AN	D TRANSPO	ORT					
		MATERIAL	LS TESTING	& RESEA	RCH DIRE	CTORATE					
		MOISTUR	RE SUSCEPT	TIBILITY 1	TEST -AASE	TO T283					and the state of the state of the
CLIENT'S NAME: Eng	NO, Dara Para										and the second second
PROJECT NAME:	eris avject for N	aster a	2 Crie	and in	Civil	Brainer	Partos				
JOB DESCRIPTION: MG	whall decimen no	ruded	at 7	Chlori	S (Pol	imer	modifi	ed usi	14 4120	1 SRS)	
SAMPLE DESCRIPTION:	Aggregates & 60/20	penet,	3 tion	grace	4 Bitos	men			9	10-2-1	
DATE RECEIVED: 09/	12 12 24	1		0					1.0.00		,
MATERIAL SOURCE AG	gregation sourced of	rom k	atum	quar	yih M	olongo	8 Bitu	nen f	on Lo	cal Su	Pfyer
DATE TESTED: 18/01	12024					0	LABORATO	RY:			
	. ,	11.00 C	ITS T	EST RESU	LTS						
TEST DESCRIPTION	FORMULAR	1	UNCONDIT	IONED SET	ſ		CONDITIC	NED SET		AVERAGE	REMARKS
			1ST :	SET			2ND	SET			1
Sample ID		Mg	MID	MII	MIZ	MIS	MIL	MIS	MIG		1
Diameter, mm	Dia	101	101	101	101	101	101	101	101		
Sample Height, mm	Ht	65	64	64	6.3	65	63	65	67		
Wt. in air, g	А	1154	1147	1138	1140	1178	1151	11 41	1175		
Wt. in water, g	· B	646	641	638	640	660	644	641	6.79	-	
SSD Wt., g	С	1159	1151	1139	1145	1180	1153	1142	11.78		
Volume, cm3	D=C - B	513	510	Sol	505	520	Sog	506	499		
Water Absorption	E=100*[(C-A)/D]	0.97	0.28	0.20	0.94	0'38	0.39	1.19	0.60		
Bulk Spec. Gravity, Gmb	F= A/D	2:250	2:249	2.271	2257	2265	2261	2255	2.275	100 C 100 C 10	
Max. Spec. Gravity, Gmm	G	2381	2:381	2381	2:381	2.381	2.381	2:381	2:381	2:381	
% air voids	H = 100*[1-(F/G)]	5:522	5.543	4.601	5.190	4.856	5.022	5.294	4.471	5.063	6' - 8
Maximum Load, kN	K	8.020	7-623	8.658	8-114	7412	6.820	6.092	9115		
ITS (Dry), kPa	L = (2*K*1,000,000)/(3.142*Ht*Dia)	778	20	853	812			/	1	798	
ITS (Wet) kPa	M = (2*K*1,000,000)/(3.142*Ht*Dia)		15.			719	682	591	912	226	
Tensile Strenght Ratio (TSR)	N = 100*M/L								1	91.0	≥80%
ITS Loss (%)	N-100%									9.0	≤20%
Tested by: Margara	te Mbele				Checked by:	Eng. A	1.0' fty	4 pan			
Date: 8/02/20	205.				Date:	Sorpa	ic 1				

APPENDIX I

Marshall Stability and Loss of Marshall Stability (ASTM D1559) Test Results

	I	MINISTR	Y OF RO	DADS AN	D TRANS	SPORT					
	MATE	RIALS T	ESTING	& RESE/	ARCH DI	RECTOR	ATE				
	MOIS	STURE S	USCEPT	IBILITY	TEST -A	STM D15	59		1		
CLIENT'S NAME: Engin	1.01 parkform										
PROJECT NAME: Thesis	propert for	Mart	r 9 4	cien.	e ih a	jui	Ongi-	reenhy			
JOB DESCRIPTION: SUPER	AUE specimen	no	mard	at	205	gymp	ons (Neat)		
SAMPLE DESCRIPTION: Ag	gregates 8 6	0770	pener	maple	n gri	se l	strome	m			
DATE RECEIVED: 0911	2/2024				0						
MATERIAL SOURCE Agg	egates conce	1 fro	m Ka	atani	quan	ym.	Molo.	190 8	Bihin	ren from	a locals
DATE TESTED: 11/02/202	5					-	LABOR/	ATORY:	Bohn	en	
	MARSH	ALL STA	BILITY	(IMMEI	RSION) TI	EST RES	ULTS	_			
TEST DESCRIPTION	FORMULAR	UN	CONDI	TIONED	SET	<u> </u>	ONDITI	ONED SE	ст	AVERAGE	REMARKS
		1.1.1.1.1.1	157	SET			2ND	SET			
Sample ID .		NI3	NIY	MIS	NIL	Ng	NID	NI	NIZ		
Diameter, mm	Dia	100	100	100	100	100	100	100	100		
Sample Height, mm	Ht	65.942	68.875	65.816	65.954	65425	65.475	65.382	66.416		
Wt. in air, g	A	1058	1058	1058	1056	1052	1053	1052	1059		
Wt. in water, g	В	592	592	592	592	592	592	592	592		
SSD Wt., g	С	1065	1065	1064	1063	1059	1058	1058	1068		
Volume, cm3	D=C - B	473	493	472	471	467	467	466	476		
Water Absorption	E=100*[(C-A)/D]	1.48	1.48	1:27	1.49	1.50	1.07	1.29	1.89	72./	
Bulk Spec. Gravity, Gmb	F= A/D	2:237	2237	2:242	2242	22253	2260	2:258	2225		
Max. Spec. Gravity, Gmm	G	2:381	2:381	2.381	2.381	2381	2381	21381	2:381		
% air voids	H = 100*[1-(F/G)]	6.057	6.057	5.858	51836	5.389	5.096	5186	6.561	5:755	3' - 7
Maximum Load, kN	K	14.093	14-656	18.091	15.812	12.557	13 442	12998	13.696		
Volume Correction Factor	L	114	1:14	1.14	1.14	1.190	119	1.19	1.14		
Corrected Stability	M = K*L	16066	16708	20624	18026	14943	15996	15468	15613	16680	
	N	<u> </u>	17	856			15	505			
Average Stability, N						10					>750/
Average Stability, N Retained Marshall Stability (%)	P=100*(2nd set/1st Set)				86	. 8					2/3%

Source: Field survey, 2025

9 6

]	MINISTE	Y OF R	DADS AN	D TRAN	SPORT							
	MATE	RIALS T	ESTING	& RESE/	ARCH DI	RECTOR	ATE		1000				
MOISTURE SUSCEPTIBILITY TEST -ASTM D1559													
CLIENT'S NAME: Engra	1.0: parpary		0.15205	37.5	1.110.20	138							
PROJECT NAME: Thep's	entient for	mas	feer a	8 50	jence	ha	Wil B	ghee	227				
JOB DESCRIPTION: Man	have spenner	mas	ndes	at	755	Low	(nlea	\$)				
SAMPLE DESCRIPTION:	gregates &	60A0	pen	etigs	500 9	nde	Site	men					
DATE RECEIVED: 09/12-1	Proz4	· ·	'		5								
MATERIAL SOURCE Agg	regates source	cert	fron	Kate	mi q	Dyam	1 inn	nolou	190 8 B	tremen t	ion Loca		
DATE TESTED: 11 02	25		4.			-	LABOR	ATORY:	Btim	en			
	MARSH	ALL STA	BILITY	(IMME	RSION) T	EST RES	ULTS						
TEST DESCRIPTION	FORMULAR	UN	CONDI	TIONED	SET	CONDITIONED SET				AVERAGE	REMARKS		
		IST SET				2ND SET							
Sample ID		NI	NZ	NERL	NEG	NE	NE	NA	N8				
Diameter, mm	Dia	101	101	101	101	101	101	10/	101				
Sample Height, mm	Ht	64	63	63	63	64	63	64	64				
Wt. in air, g	A	1136	1132	1135	1125	1146	1132	1135	11113				
Wt. in water, g	В	637	637	636	630	641	637	635	643				
SSD Wt., g	С	1139	1134	1138	1128	1149	1134	1138	1148				
Volume, cm3	D=C - B	502	497	502	498	508	497	503	505				
Water Absorption	E=100*[(C-A)/D]	0.60	0.40	0.60	0.60	0.59	0.40	0.60	0199				
Bulk Spec. Gravity, Gmb	F= A/D	2.263	2:278	2:261	2.259	2256	2:278	2-256	2263				
Max. Spec. Gravity, Gmm	G	2:381	2:381	2381	2:381	2.381	2.3.81	2381	2:381				
% air voids	H = 100*[1-(F/G)]	41958	4340	5.042	5122	5.254	4-340	5231	4-941		3' - 7		
Maximum Load, kN	K	16.640	11.410	13.564	14710	13-147	16.410	12.845	1228	6			
Volume Correction Factor	L	104	1:04	104	1. DLF	1.04	1.04	1.04	1.04				
Corrected Stability	M = K*L	17306	11866	14107	15298	13678	12066	14 399	13921	10022			
Average Stability, N	N		14	644	2-10		14	265					
	P=100*(2nd set/let Set)				10	018					≥75%		
Retained Marshall Stability (%)	1-100 (2110 Set 1st Set)												

D

	1	MINISTR	Y OF R	OADS AN	D TRANS	SPORT					100 C C C C C
	MATE	RIALS TI	ESTING	& RESEA	ARCH DI	RECTOR	ATE	1.111			
	MOI	STURE S	USCEPT	IBILITY	TEST -A	STM D15	559				
CLIENT'S NAME: GAGIN	OF Para Para										
PROJECT NAME: Then I	moult for N	laster	01	Scier	nce ih i	chul	Engl	een	5		
JOB DESCRIPTION: SUPER	20ALLE Specim	en m	and	d at	2059	unt	no CI	001 yme	rmo	diffed u	16ha 1229
SAMPLE DESCRIPTION: Age	nighty & 60	170 P	ereta	tion	ande	Rity	men				51-6
DATE RECEIVED: 09/12	2024				J				1. 1. 16.2		
MATERIAL SOURCE Aga,	reanter source	ed of	non	Icatar	y que	my 1	h mh	olongo	8 Bit	men fr	m Local
DATE TESTED: 11/02/2025	- 0 -						LABORA	ATORY:	estre n	en	
	MARSH	ALL STA	BILITY	(IMME	RSION) TI	EST RES	ULTS	10.00			
TEST DESCRIPTION	FORMULAR	UN	CONDI	FIONED	SET	C	ONDITI	ONED SE	ст	AVERAGE	REMARKS
		1ST SET				Î	2ND	SET	1	1	
Sample ID .		513	SIL	515	516	59	510	511	SIZ	Î	1
Diameter, mm	Dia	100	100	100	100	100	100	100	100		
Sample Height, mm	Ht	66.329	66.676	66.466	66.006	65.925	65.640	64.183	67.42	3	
Wt. in air, g	A	1055	1057	1054	1050	1057	IOFE	1058	1055	T	
Wt. in water, g	В	588	591	591	594	590	592	594	(91	1	
SSD Wt., g	С	1061	1064	1061	1061	1089	1061	1064	1060		
Volume, cm3	D=C - B	471	472	420	462	469	469	470	469		
Water Absorption	E=100*[(C-A)/D]	1.27	1:48	1.49	1.00	108	1.20	1.28	1.02		
Bulk Spec. Gravity, Gmb	F= A/D	2:230	2:235	2243	2.257	2:245	2249	2-251	2,249		
Max. Spec. Gravity, Gmm	G	2.381	2.381	2381	2381	2381	2381	2.381	2.251		
% air voids	H = 100*[1-(F/G)]	6.323	6.146	5.815	5.210	5.203	5.824	5.457	5.824	5:713	3' - 7
Maximum Load, kN	K	16.129	18.204	16.202	17:057	16.477	14-260	13 770	14312	1	
Volume Correction Factor	L	114	1.14	1. 19	1.19	1.19	1.19	1.19	1.19		
Corrected Stability	M = K*L	18 LLCV	2084	19250	20298	19608	16964	16327	17037	18604	
Average Stability, N	N		1	9222	-10	.,	17	2485			
D. (P=100*(2nd set/1st Set)				8	8.7				1000	≥75%
Retained Marshall Stability (%)											

Source: Field survey, 2025

	1	MINISTR	Y OF RO	DADS AN	D TRANS	SPORT					
	MATE	RIALS TH	STING	& RESEA	ARCH DI	RECTOR	ATE	100		1. 19 . 19 March	1.4.1.1.1.1.1
	MOIS	STURE S	USCEPT	IBILITY	TEST -A	STM D15	59	16.16.82	Q		
CLIENT'S NAME: DINN	2. occome										
PROJECT NAME: There's	project for y	My ste	ox c	cien	e ih	cini	Brach	eny			
JOB DESCRIPTION: Marsh	all Speymen n	roud	200 0	tri	shows	(PO	lyne	mod	y Fred	upha 4	2% 605
SAMPLE DESCRIPTION: AG	aregates & 6	obro	ener	ntion	and	e Rh	mens			any i	
DATE RECEIVED: 09/12	hore			,	0			1000			
MATERIAL SOURCE A La	gater sources	1 fr	m	katu	v qu	any 1	hml	2019	OSB	trong of	margh
DATE TESTED: 1102/1	nort						LABORA	ATORY:	Bitm	en	
	MARSH	ALL STA	BILITY	(IMMEF	RSION) T	EST RES	ULTS				
TEST DESCRIPTION	FORMULAR	UNCONDITIONED			SET	C	ONDITI	т	AVERAGE	REMARKS	
		1ST SET				2ND SET					
Sample ID		MI	MZ	M3	MH	MS	MG	MZ	M8		
Diameter, mm	Dia	101	101	101	101	101	101	101	101		
Sample Height, mm	Ht	64	64	65	64	64	63	64	64		
Wt. in air, g	A	1143	1160	1157	11520	1162	1118	1102	1156		
Wt. in water, g	В	byte	652	644	648	652	631	643	648		
SSD Wt., g	С	1145	1163	1156	1155	1169	1120	1157	1160	6 m	
Volume, cm3	D=C - B	501	511	512	507	517	489	514	512		
Water Absorption	E=100*[(C-A)/D]	0,40	0.59	0.98	0.20	1.35	0,41	0.97	0.78		
Bulk Spec. Gravity, Gmb	F= A/D	2:281	2.230	2.248	2:276	2248	2286	25241	2:258		
Max. Spec. Gravity, Gmm	G	2381	2381	2381	2:381	2381	2.381	2:381	2:281		
% air voids	H = 100*[1-(F/G)]	4.182	4-659	5.84	4.404	5.603	3922	5870	51720	5102	3' - 7
Maximum Load, kN	K	14,200	13.589	15.512	17-728	11.015	14.917	10.451	16.262		
Volume Correction Factor	L	1.04	1.00	1.00	1.04	1.00	1.09	1.00	1.00		
Corrected Stability	M = K*L	14806	13.589	15-512	18.432	11-015	16260	10451	16262	14542	
Amorogo Ctobility M	N		6	\$586			17	497			
Average Stability, N								/			>750/
Retained Marshall Stability (%)	P=100*(2nd set/1st Set)				8	516					2/370

APPENDIX J

Rut depth graph results for the SUPERPAVE HMA sample for neat and polymer-modified

