

Cost and Load Effect Comparisons Between Reinforced Concrete Integral and Non-Integral Bridge Using Experimental and Analytical Examinations

* Osano Simpson Nyambane, Mellese Yimam and Silvester Abuodha

Received on 6th February, 2024; Received in revised form 11th March, 2024; Accepted on 25th March, 2024.

Abstract

Bridges without joints or bearings are referred to as "integral bridges," while bridges with joints and expansion joints are referred to as "non integral bridges. This study aims to examine the cost differences between the integral and non-integral bridge of the same length and height using analytical and experimental investigations. Modelling, analysis, design, detailing and costing of 15m,20m, 22.5m and 25m single span reinforced concrete girder integral bridge and 15m,20m, 22.5m and 25m single span reinforced concrete girder non integral bridge were done. The experimental program included six reinforced concrete bridge models three integral bridge models; namely, a) 1000mm length, 600mm high and 95mm thick b)1250mm length,600mm high and 105mm thick c) 1500mm length,600mm high and 120mm thick and three additional non-integral bridge model of the same sizes and reinforcements. Analytical examinations were made for six integral bridges and six non-integral bridges for verifications. The experimental results reveals that the MIDS CIVIL finite element software is in agreement with the results obtained within +/-10% and recommended to be used in the design. The priced bill of quantities based on the design reveals that the decrease of cost by 19.1% to 20.0% for integral bridge as compared to non-integral bridges with the same length and height. It is recommended that planners and engineers embrace integral design and construction by reviewing the road design handbook, which specifies that integral design must take precedence over non-integral concepts to save costs.

Keywords: Cracking loads, integral bridge models, non-integral bridge models, ultimate failure loads

INTRODUCTION

It can be seen that the proportion of bridges that are 'integral' has increased significantly in this Period and now accounts for about half of the total bridge construction in UK. (Peter, et.al, 2006).

The study's goals are to model, analyze, design, and estimate the cost of integral and non-integral through experimental and analytical examinations; and, in the end, assess whether the results of the analyses and experiments agree.

Integral bridge construction and design are appropriate for tropical climates with moderate temperature variations.

THEORY

This study involves literature research,

experimental research and finite element based structural modelling, analysis and design. **Figures 1a&b** shows that non-integral bridges deteriorated due to leakage of water through the expansion joints and bridge seats that eventually lead to corrosion. (Martin.et.al, 2009).

It can be seen that the proportion of bridges that are 'integral' has increased significantly in this Period and now accounts for about half of the total bridge construction in UK. (Peter, et.al, 2006).

Horizontal earth pressure on the integral abutments

Abutment of the integral bridge experiences cyclic loadings due to expansion and contraction of the deck due to daily and annual temperature variations. Due to this, there exists complicated soil

*Corresponding author: **Osano Simpson Nyambane** Director of civil and construction engineering department, University of Nairobi. Email: sosano@uonbi.ac.ke

structure interactions that creates uncertainties in the design of integral bridges. Avoiding the joints and bearings have significantly reduce the overall cost and maintenance of the structure and it is becoming increasingly popular in many countries (Alan G.et al, 2012). Lateral earth pressure can be as high as the maximum passive earth pressures or as low as the minimum active earth pressure based on the horizontal displacement of the abutments due to temperature variations (Sami A, et al, 1999).

The horizontal earth pressure on the abutment wall of integral bridges is cyclical; it increases when the bridge expands and decreases when the

FIGURE 1 (a) Damage due to corrosion for non-integral bridges Source: Martin.et.al, (2009)

bridge contracts. **Fig 1a&b to Fig 5** show how the lateral horizontal earth pressure on the abutments vary during expansion and contraction.

The additional stress induced in the frame type of the integral bridges due to thermal expansion of the deck are controlled to large extent by the backfill soil adjacent to the abutments (B.M.Lehane et.al 1999).

Study Hypothesis

The following are study hypothesis:

1. Integral bridges perform better than nonintegral bridges and are cost effective.

FIGURE 1 (b) Lateral earth pressure on abutments during bridge expansion **Source:** Alan G.et al, (2012)

Lateral earth pressure on abutments during bridge contraction **Source:** Alan G.et al, (2012)

FIGURE 3

Cyclic lateral earth pressure during bridge expansion and contraction **Source:** Alan G.et al, (2012)

- 2. Maximum deflection of integral bridge is less than non-integral bridge of the same size.
- 3. The ultimate load capacity of the integral bridge is higher than non-integral bridge at failure.

Experimental Program

The experimental program in this paper consists of two phases. The first phase was to prepare the six bridge models as per the structural drawings prepared and cast following all the procedures and specifications required. The second phase aimed at loading the bridge models till ultimate failure and analysis of the results obtained from

Different types of soil model in the integral bridge contraction **Source:** Alan G.et al, (2012)

FIGURE 5 Framed integral bridge Source: Lehane B.M. et.al, (1999)

the loading tests.

Description of the Models and Details

The models are three integral bridge models. **Figure 6(b) to Figure 6(c)** illustrate geometry and reinforcement details of the bridge model samples while **Figure 6(a)** illustrates the schematic drawings of integral and non-integral bridge models. **Table 1** shows the properties of the bridge models and materials used, while **Table 2** show the main longitudinal steel reinforcements used and properties.

Materials Used

Concrete

Table 3, Table 4 and Table 5 show some of the

FIGURE 6(a)

Integral and non-integral bridge models loading schematic drawing **Source:** Author, 2024

TABLE 1

Properties of the bridge models deck slab and materials used

Bridge Model	Model Type	Slab Thick. [mm]	Slab width [mm]	Length of the bridge model [mm]	Compressive Strength (28 Days Cylindrical) f _{ck} [MPa]	Steel Yield Strength f _{yk} [MPa]	Modulus of Elasticity Concrete Ec[MPa]]
1	Integral	95	500	1000	35	420	32,837
2	Non-integral	95	500	1000	35	420	32,837
3	Integral	105	500	1250	35	420	32,837
4	Non-integral	105	500	1250	35	420	32,837
5	Integral	120	500	1500	35	420	32,837
6	Non-integral	120	500	1500	35	420	32,837

FIGURE 6(b)

Geometrical and structural drawings of the Integral bridge model-1 Length=1000mm **Source:** Author, 2024

TABLE 2

Properties of the bridge models deck slab and materials used

Bridge Model	Model Type	Length of the bridge model [mm]	Area of tension reinforcement used [mm2]	Steel Yield Strength f _y [MPa]	Ultimate Steel Tensile Strength fu[MPa]	Modulus of Elastiity Steel [GPa]
1	Integral	1000	566	420	500	200
2	Non-integral	1000	566	420	500	200
3	Integral	1250	679	420	500	200
4	Non-integral	1250	679	420	500	200
5	Integral	1000	792	420	500	200
6	Non-integral	1000	792	420	500	200

Source: Author, 2024

basic properties of the materials used in the concrete mix design and the result obtained. **Figure 7** shows the particle size distributions of the aggregates mix used in the concrete mix.

The production of cement is very costly and it is one of the major human activities responsible in the rise of Co2 –emissions. To minimize the cost of concrete production and reduce the negative

FIGURE 6(c)

Geometrical and structural drawings of the Non-integral bridge model-2 Length=1000mm **Source:** Author, 2024

TABLE 3

Material properties of materials used in the mix design

I. No	Material Description	Loose Density [Kg/m3]	Dry Rodded Density [Kg/m3]	Bulk Specific Gravity SSD	Absorption [%]	Moisture Content [%]
1	Cement 42.5N	1440.00	Not Required	3.15	Not Required	Not Required
2	Aggregate 0/6mm	1331.06	1482.25	2.45	3.50	6.5
3	Aggregate 6/10mm	1303.40	1372.00	2.45	2.10	1.0
4	Aggregate 10/20mm	1317.18	1408.75	2.45	1.80	1.0
5	Combined Coarse aggregate	1421.05	1597.40	2.45	1.95	

Source: Author, 2024

environmental impact due to Co2 emissions, it is important to use innovative technology and method for the design of concrete structures and concrete mixes (Mellese Yimam, et.al, 2023). The particle packing technology is used in the concrete mix design.

Material used in the mix design-1m³

I.No.	Eurocode Designation	Characteristics Cylinder Strength	Characteristics Cube Strength	Water SSD	Cement 42.5 N	Admixture DYNAMON	Aggregate 0mm/6mm	Aggregate 6mm/10mm	Aggregate 10mm/20mm	Estimated Density (2% Air)	Water +Admixture) to Cement ratio
	Class	MPa	MPa	Lt/m ³	Kg/m ³	Lt/m ³	Kg/m ³	Kg/m ³	Kg/m ³	Lt/m ³	Ratio
1	C35/45	35.0	45.0	139.0	358.9	4.6	842.1	324.8	603.3	2273.1	0.40

Source: Author, 2024

TABLE 5

Average compressive strengths at 3days, 7days and 28days, slump and density of Concrete mix obtained at laboratory

I.No.	Eurocode Designation	Average Observed Slump	3 Days Cubic Strength	7 Days Cubic Strength	28 Days Cubic Strength	Density of the Con- crete	Admixture Used	Aggregate Concrete Ratio	Water +Admixture) to Cement ratio
	Class	mm	MPa	MPa	MPa	Kg/m ³	Lt/m ³	Kg/Kg	Ratio
1	C35/45	100/180	32.1	42.1	57.0	2275	4.6	0.78	0.40

Source: Author, 2024

RESULTS AND DISCUSSION

Bridges Models General Behaviour

The load was applied using a hydraulic Jack with increment of 10kN ever 1mininute until failure. Figure 8 and Figure 9 show the shape and the mechanism of the failed bridge models. Initially no cracks were observed and showed elastic behavior. After increasing the applied load, vertically oriented flexural cracks appeared at the middle of the bridge models for non-integral bridge models that showed ductile failure. With further increasing the applied load the flexural-shear cracks propagated towards the supports. The mode of failures for non-integral bridge models were flexural tension cracks associated with the yielding of the steel and tensile failure of the concrete while in the integral bridge models shear-flexural fails occurred at the support and mid spans.

Ultimate Failure Loads Capacity

The computations show that minimum ultimate failure loads were obtained for flexural in the nonintegral bridge and minimum ultimate failure loads were obtained for shear for in the integral bridges. Table 6 presents the analytical computation of ultimate flexural failure loads capacity for bridges and Table 7 presents the analytical computations of ultimate shear failure loads without transverse shear reinforcements. Table 8 presents the ultimate final failure loads computed and the expected mode of failure. Computation results show that integral bridges fails in shear and nonintegral bridges fail in flexural tension. Table 9 shows the ratio of the ultimate failure loads of integral to non-integral bridges obtained from analytical computations. Table 10 summarizes the experimentally measured ultimate failure loads and observed mode of failure for the six bridge models. Table 11 shows the ratio of the ultimate

Mixed aggregate 0/20mm gradation for concrete C35/40 mix **Source:** Author, 2024

FIGURE 8 Failed Non-integral bridge model Source: Author, 2024

failure loads of integral to non-integral bridges obtained from experimental computations. **Figure 10 to Figure 17** show the ultimate failure loads experimentally obtained and analytically computed; and the comparisons among them.

FIGURE 9 Failed integral bridge model Source: Author, 2024

TABLE 6Computed ultimate flexural failure loads

Compres	sive Strength (28 I	Days Cylin	idrical)			f _{ck} [MPa]	35	1	(1)	1.3	1			
Compres	sive Strength (28 I	Days Cubi	c)			fck,cube[MPa]	45	Icrackii	$ng = \left(\frac{-}{3}\right)$	$bc^{\circ} + nAs($	$(\mathbf{a} - \mathbf{c})^2$			
Yield St	rength of the steel					fyk[MPa]	420	Marila	Icr F	γ.				
Secant N	fodulus of Elasticit	ty of conci	rete			Ecm[MPa]	34,07	Myella	n(d-c)					
Modulus	of Elasticity of ste	eel				Est[MPa]	200,0	1	Mcrushing = 0.30Fckbd2					
Modular Ratio of Est/Econ					n	5.9	_n	$As + \sqrt{0}$	$(nAs)^2 + 2nA$	shd				
Ultimate Failure load/Yield failure loads Estimated					Ratio	1.20	C =	13 1 1 (b	1304				
Br. Model Model Type Length of the [mm] Slab Eff. thick L/d				L/d	Area of steel [mm2]	Reinf Ratio ρ[%]	Comp depth C [mm]	Slab width [mm]	Cracked moment of inertia Icr-mm4 x1000,000	Crushing Flexural moment Capacity Mcr. [kNm]	My Yield moment [kNm]	Vertical Flexural Yield Load Pu;yd [kN]	Vertical Ultimate Flexural Failure Load Pu,fl	
														IN. 1
1	Integral	1,000	95	64	15.6	565	1.8	23	500	7.6	21.5	13.4	116	140
1 2	Integral Non-integral	1,000 1,000	95 95	64 64	15.6 15.6	565 565	1.8 1.8	23 23	500 500	7.6	21.5 21.5	13.4 13.4	116 63	140 75
1 2 3	Integral Non-integral Integral	1,000 1,000 1,250	95 95 105	64 64 74	15.6 15.6 16.9	565 565 679	1.8 1.8 1.8	23 23 27	500 500 500	7.6 7.6 12.1	21.5 21.5 28.7	13.4 13.4 18.5	116 63 121	140 75 146
1 2 3 4	Integral Non-integral Integral Non-integral	1,000 1,000 1,250 1,250	95 95 105 105	64 64 74 74	15.6 15.6 16.9 16.9	565 565 679 679	1.8 1.8 1.8 1.8	23 23 27 27	500 500 500 500	7.6 7.6 12.1 12.1	21.5 21.5 28.7 28.7	13.4 13.4 18.5 18.5	116 63 121 70	140 75 146 84
1 2 3 4 5	Integral Non-integral Integral Non-integral Integral	1,000 1,000 1,250 1,250 1,500	95 95 105 105 120	64 64 74 74 89	15.6 15.6 16.9 16.9 16.9	565 565 679 679 792	1.8 1.8 1.8 1.8 1.8	23 23 27 27 27 32	500 500 500 500 500	7.6 7.6 12.1 12.1 20.6	21.5 21.5 28.7 28.7 41.6	13.4 13.4 18.5 18.5 26.0	116 63 121 70 135	140 75 146 84 162
1 2 3 4 5 6	Integral Non-integral Integral Non-integral Integral Non-integral	1,000 1,000 1,250 1,250 1,500 1,500	95 95 105 105 120 120	64 64 74 74 89 89	15.6 15.6 16.9 16.9 16.9 16.9	565 565 679 679 792 792	1.8 1.8 1.8 1.8 1.8 1.8 1.8	23 23 27 27 27 32 32	500 500 500 500 500 500 500	7.6 7.6 12.1 12.1 20.6 20.6	21.5 21.5 28.7 28.7 41.6 41.6	13.4 13.4 18.5 18.5 26.0 26.0	116 63 121 70 135 84	140 75 146 84 162 100
1 2 3 4 5 6 7	Integral Non-integral Non-integral Integral Non-integral Integral- Ref.1	1,000 1,000 1,250 1,250 1,500 1,500 2,000	95 95 105 105 120 120 150	64 64 74 74 89 89 117	15.6 15.6 16.9 16.9 16.9 16.9 17.1	565 565 679 679 792 792 1,206	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.7	23 23 27 27 27 32 32 42	500 500 500 500 500 500 500 600	7.6 7.6 12.1 12.1 20.6 20.6 54.6	21.5 21.5 28.7 28.7 41.6 41.6 86.2	13.4 13.4 18.5 18.5 26.0 26.0 52.2	116 63 121 70 135 84 207	140 75 146 84 162 100 248
1 2 3 4 5 6 7 8	Integral Non-integral Non-integral Integral Non-integral Integral- Ref.1 Non-integral-	1,000 1,000 1,250 1,250 1,500 1,500 2,000 2,000	95 95 105 105 120 120 150 150	64 64 74 74 89 89 117 117	15.6 15.6 16.9 16.9 16.9 16.9 17.1 17.1	565 565 679 792 792 1,206 1,206	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.7 1.7	23 23 27 27 32 32 42 42 42	500 500 500 500 500 500 600 600	7.6 7.6 12.1 12.1 20.6 20.6 54.6 54.6	21.5 21.5 28.7 28.7 41.6 41.6 86.2 86.2	13.4 13.4 18.5 18.5 26.0 26.0 52.2 52.2	116 63 121 70 135 84 207 126	140 75 146 84 162 100 248 152
1 2 3 4 5 6 7 8 9	Integral Non-integral Integral Non-integral Integral- Ref.1 Non-integral- Integral- Ref.2	1,000 1,000 1,250 1,250 1,500 1,500 2,000 2,000 2,500	95 95 105 120 120 150 150 175	64 64 74 89 89 117 117 142	15.6 15.6 16.9 16.9 16.9 16.9 17.1 17.1 17.1	565 565 679 792 792 1,206 1,206 1,810	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.7 1.7 1.7	23 23 27 27 32 32 42 42 51	500 500 500 500 500 500 600 600 750	7.6 7.6 12.1 12.1 20.6 20.6 54.6 54.6 121.1	21.5 21.5 28.7 28.7 41.6 41.6 86.2 86.2 158.8	13.4 13.4 18.5 18.5 26.0 26.0 52.2 52.2 52.2 95.0	116 63 121 70 135 84 207 126 338	$\begin{array}{c} 140\\ 75\\ 146\\ 84\\ 162\\ 100\\ 248\\ 152\\ 406\\ \end{array}$
1 2 3 4 5 6 7 8 9 10	Integral Non-integral Integral Non-integral Integral Non-integral Integral- Ref.1 Non-integral- Integral- Ref.2 Non-integral-	1,000 1,000 1,250 1,250 1,500 1,500 2,000 2,000 2,500 2,500	95 95 105 105 120 120 150 150 175 175	64 64 74 74 89 89 117 117 142 142	15.6 15.6 16.9 16.9 16.9 16.9 17.1 17.1 17.1 17.6 17.6	565 565 679 792 792 1,206 1,810 1,810	1.8 1.8 1.8 1.8 1.8 1.8 1.7 1.7 1.7 1.7 1.7	23 23 27 27 32 32 42 42 42 51 51	500 500 500 500 500 500 600 600 750 750	7.6 7.6 12.1 12.1 20.6 20.6 54.6 54.6 121.1 121.1	21.5 21.5 28.7 28.7 41.6 41.6 86.2 86.2 158.8 158.8	13.4 13.4 18.5 18.5 26.0 26.0 52.2 52.2 95.0 95.0	116 63 121 70 135 84 207 126 338 185	140 75 146 84 162 100 248 152 406 222
1 2 3 4 5 6 7 8 9 10 11	Integral Non-integral Integral Non-integral Integral Non-integral Integral- Ref.1 Non-integral- Integral- Ref.2 Non-integral- Integral- Ref.3	1,000 1,000 1,250 1,250 1,500 2,000 2,000 2,500 2,500 3,000	95 95 105 120 120 150 150 175 175 200	64 64 74 74 89 89 117 117 142 142 167	15.6 15.6 16.9 16.9 16.9 17.1 17.1 17.6 17.6 17.6 18.0	565 565 679 792 792 1,206 1,206 1,810 1,810 2,815	1.8 1.8 1.8 1.8 1.8 1.8 1.7 1.7 1.7 1.7 1.7	23 23 27 27 32 32 42 42 42 51 51 60	500 500 500 500 500 500 600 600 750 750 750 1000	7.6 7.6 12.1 20.6 20.6 54.6 54.6 121.1 121.1 261.1	21.5 21.5 28.7 28.7 41.6 41.6 86.2 86.2 158.8 158.8 292.8	13.4 13.4 18.5 18.5 26.0 26.0 52.2 52.2 95.0 95.0 174.0	116 63 121 70 135 84 207 126 338 185 457	140 75 146 84 162 100 248 152 406 222 549

Computed ultimate shear failure loads without shear reinforcement as per the Euro code

Compres	ssive Strength (28 Da	rical)			fck[MPa]	35						
Compres	ssive Strength (28 Da	ys Cubic)				fck,cube[MPa]	45]				
Yield St	rength of the steel					fyk[MPa]	420	20				
C _{RD,C}						Ratio	0.12	V RD 21	$V_{RD\ 21.\ 8} = 0.124 v f c k b d$			
v=0.6(1-	-fck/250)					Ratio	0.516	Vd = C	RDK(100pf	$(k)^{1/3}bd$		
Failure S	Shear strength/Design	n shear stre	ength			Ratio	1.50					
Bridge Model	Model Type	Length of the model [mm]	Slab thick. [mm]	Effective Depth [mm]	L/d	Area of steel [mm2]	Reinf. Ratio ρ[%]	f. Depth Maximum Failure Ver o factor Shear Shear Ultimat o K Limit Strength Failure v RD21.8 Vd[kN] Pu; s				
1	Integral	1,000	95	64	15.6	565	1.8	2.0	69.4	45.6	89.9	
2	Non-integral	1,000	95	64	15.6	565	1.8	2.0	69.4	45.6	89.9	
3	Integral	1,250	105	74	16.9	679	1.8	2.0	80.2	53.3	105.0	
4	Non-integral	1,250	105	74	16.9	679	1.8	2.0	80.2	53.3	105.0	
5	Integral	1,500	120	89	16.9	792	1.8	2.0	96.4	63.5	124.7	
6	Non-integral	1,500	120	89	16.9	792	1.8	2.0	96.4	63.5	124.7	
7	Integral- Ref.1	2,000	150	117	17.1	1,206	1.7	2.0	152.0	99.0	194.0	
8	Non-integral-	2,000	150	117	17.1	1,206	1.7	2.0	152.1	99.0	193.5	
9	Integral- Ref.2	2,500	175	142	17.6	1,810	1.7	2.0	230.8	149.7	291.1	
10	Non-integral-	2,500	175	142	17.6	1,810	1.7	2.0 230.8 149.7 291.1				
11	Integral- Ref.3	3,000	200	167	18.0	2,815	1.7	2.0 361.9 234.0 453.1				
12	Non-integral-	3,000	200	167	18.0	2,815	1.7	2.0	361.9	234.0	453.1	

Source: Author, 2024

TABLE 8

Summary of the computed failure loads and expected mode of failure

Bridge Model	Model Type	Length of the model [mm]	Slab thick. [mm]	Vertical Ultimate flexural Failure Load Pu,fl [kN]	Vertical Ultimate Shear Failure Load Pu; shear[kN]	Final Failure Load-Pu Min [Shear, flexure [kN]	Mode of failure expected
1	Integral	1,000	95	140	89.9	89.9	Shear
2	Non-integral	1,000	95	75.3	89.9	75.3	Flexure
3	Integral	1,250	105	146	105.0	105.0	Shear
4	Non-integral	1,250	105	84.1	105.0	84.1	Flexure
5	Integral	1,500	120	162	124.7	124.7	Shear
6	Non-integral	1,500	120	100.3	124.7	100.3	Flexure
7	Integral- Ref.1	2,000	150	248	194.0	194	Shear
8	Non-integral Ref.1	2,000	150	151.8	193.5	151.8	Flexure
9	Integral- Ref.2	2,500	175	406	291.1	291.1	Shear
10	Non-integral Ref.2	2,500	175	222.2	291.1	222.2	Flexure
11	Integral- Ref.3	3,000	200	549	453.1	453.1	Shear
12	Non-integral Ref.3	3,000	200	337.1	453.1	337.1	Flexure

Computed ratio of integral to non-integral ultimate failure loads

Bridge Model	Length of the model [mm]	Slab thick. [mm]	Final Failure Load of In- tegral bridge [Shear, flexure] [kN]	Final Fail- ure Load of Non-integral bridge [Shear, flexure] [kN]	Percentage increase of fail- ure load from non-integral to integral [%]	Ratio of Failure loads Inte- gral/Non-in- tegral
1	1,000	95	89.9	75.3	19.4%	1.19
2	1,250	105	105.0	84.1	24.9%	1.25
3	1,500	120	124.7	100.3	24.3%	1.24
4	2,000	150	193.5	151.8	27.5%	1.28
5	2,500	175	291.1	222.2	31.0%	1.31
6	3,000	200	453.1	337.1	34.4%	1.34

Source: Author, 2024

TABLE 10

Summary of the experimentally measured ultimate failure loads and observed mode of failure

Bridge Model	Model Type	Length of the model [mm]	Slab thick. [mm]	Final Failure Load-Pu Min [Shear, flexure [kN]	Mode of failure observed
1	Integral	1,000	95	98.9	Shear
2	Non-integral	1,000	95	81.0	Flexure
3	Integral	1,250	105	117.6	Shear
4	Non-integral	1,250	105	89.2	Flexure
5	Integral	1,500	120	135.6	Shear
6	Non-integral	1,500	120	109.0	Flexure

Source: Author, 2024

TABLE 11

Experimentally measured ratio of integral to non-integral ultimate failure loads

Bridge Model	Length of the model [mm]	Slab thick. [mm]	Final Failure Load of In- tegral bridge [Shear, flexure] [kN]	Final Failure Load of Non-in- tegral bridge [Shear, flexure] [kN]	Percentage in- crease of failure load from non-in- tegral to integral [%]	Ratio of Failure loads Integral/ Non-integral
1	1,000	95	98.9	81.0	22.1%	1.22
2	1,250	105	117.6	89.2	31.9%	1.32
3	1,500	120	135.6	109.0	24.3%	2.17

Computed ultimate vertical failure loads for integral and non-integral bridges **Source:** Author, 2024

FIGURE 11

Experimental ultimate vertical failure loads for integral and non-integral bridges **Source:** Author, 2024

Computed ratio of ultimate failure loads for integral and non-integral bridges of the same sizes and reinforcement **Source:** Author, 2024

FIGURE 13

Experimentally obtained ratio of ultimate failure loads for integral and non-integral bridges of the same sizes and reinforcement **Source:** Author, 2024

FIGURE 14

Experimentally obtained and computed ratio of ultimate failure loads for integral and non-integral bridges of the same sizes and reinforcement **Source:** Author, 2024

2768

Computed and measured ultimate failure loads Integral to Non-integral Bridge models **Source:** Author, 2024

FIGURE 16

Computed percentage increase of ultimate failure loads for integral and non-integral bridges of the same sizes and reinforcement

Experimentally measured percentage increase of ultimate failure loads for integral and non-integral bridges of the same sizes and reinforcement **Source:** Author, 2024

The experimental results obtained in regards to ultimate failure loads show that it is in consistence with the theories that integral construction carries more load and deflect less.

Midas Civil Analytical Computations

Analytical analyses were done using MIDAS CIVIL finite element analysis software as presented in **Tables 12 to 20**.

TABLE 12

Properties of materials and loading data used in the modelling, analysis and design of the models

I.No	Material Type	Unit	Quantity
1	Concrete Cylinder Compressive Strength	MPa	35
2	Yield strength of reinforcing steel	MPa	420
3	Modulus of subgrade reaction for Foundation soil	kN/m3	100,0000
4	Density of back fill soil to the abutments	kN/m3	18
5	Angle of internal friction of back fill soil to the abutments	Degrees	34
6	Lateral earth pressure coefficient for non-integral bridge	kni	0.44
7	Lateral earth pressure coefficient for integral bridge	kni	1.0
8	Maximum Temperature variations expected	Degrees	25
9	Ground acceleration at rock level seismic	m/s2	1

Basic data for non-integral bridge used in modelling, design and cost

I.No	Description	Unit	Quantity	Remarks
1	Length of the bridge	m	25.00	
2	Number of girders	No	4.00	
3	Depth of the girder including the deck	m	1.75	
4	Spacing of the girders	m	2.50	
5	Depth of the top deck	m	0.25	
6	Carriage way width	m	7.00	Two lane vehicular bridge
7	Total width of the bridge	m	11.00	
8	Width of the girder	m	0.50	
9	Height of the abutment	m	15.00	
10	Number of diaphragm beams	No	3.00	
11	Width of the walk way	m	1.50	Both Sides

Source: Author, 2024

TABLE 14

Basic data for integral bridge used in modelling, design and cost

I.No	Description	Unit	Quantity	Remarks
1	Length of the bridge	m	25.00	
2	Number of girders	No	4.00	
3	Depth of the girder including the deck at support	m	1.75	
4	Depth of the girder including the deck at mid span	m	1.00	
5	Spacing of the girders	m	2.50	
6	Depth of the top deck	m	0.25	
7	Carriage way width	m	7.00	Two lane vehicular bridge
8	Total width of the bridge	m	11.00	
9	Width of the girder	m	0.50	
10	Height of the abutment	m	15.00	
11	Number of diaphragm beams	No	2.00	
12	Width of the walk way	m	1.50	Both Sides

Source: Author, 2024

TABLE 15

Ultimate design forces in the girder beams of Integral and Non-integral Bridges of 25m span and 15m high abutments obtained from finite element analysis

II. No	Description	Unit	Non-integral Bridge	Integral Bridge
1	Maximum positive bending at mid span	kNm	9,656	3,120
2	Maximum negative Bending at support	kNm	0.0	6,041
3	Maximum torsional moment	kNm	249	224
4	Maximum Shear Force at support	kN	1,728	1,672

Ultimate design forces in the abutment wall of integral and non-integral bridges of 25m span and 15m high abutments obtained from finite element analysis

I. No	Description	Unit	Non-integral Bridge	Integral Bridge
1	Maximum ultimate negative bending moment at top of the abutment.(fill side tension)	kNm/m	0.0	3,625
2	Maximum ultimate negative bending moment at bot- tom of the abutment.(fill side tension)	kNm/m	2,733	1,125
3	Maximum ultimate shear force at top the abutment	kN/m	0.0	1,100
4	Maximum ultimate shear force at bottom the abut- ment	kN/m	1,300	1,170

Source: Author, 2024

TABLE 17

Ultimate design forces in the footing base of integral and non-integral bridges of 25m span and 15m high abutments obtained from finite element analysis

I. No	Description	Unit	Non-integral Bridge	Integral Bridge
1	Maximum ultimate bending moment at top of the footing heel side.(tension on the top)	kNm/m	1,555	685
2	Maximum ultimate bending moment at bottom of the footing toe side.(tension on the bottom)	kNm/m	1,568	695
3	Maximum ultimate shear force	kN/m	1,250	1,050

Source: Author, 2024

TABLE 18

Superstructure deflections at service for integral and non-integral bridges of 25m span and 15m high abutments. Cracked moment of inertia used to reflect the reality

I. No	Description	Unit	Non-integral Bridge	Integral Bridge
1	Maximum permanent load deflection at mid span	mm	36	20
2	Maximum live load deflection at mid span	mm	16	11
3	Maximum service live load deflection at mid span	mm	52	31

Source: Author, 2024

TABLE 19

Foundation stresses at service for integral and non-integral bridges of 25m span and 15m high abutments

I. No	Description	Unit	Non-integral Bridge	Integral Bridge
1	Maximum foundation stress at service	kN/m ²	36	20

Estimated concrete and steel reinforcements for integral and non-integral bridges of 25m span and 15m high abutments

I. No	Description	Unit	Non-integral Bridge	Integral Bridge
1	Concrete C35/45 in super-structure	m ³	231	203
2	Concrete C35/45 in sub-structure	m ³	1,227	963
3	Total concrete C35/45 m3	m ³	1,458	1,166
4	High yield strength Fy=500MPa in super-structure	Tons	33.9	30.6
5	High yield strength Fy=500MPa in sub-structure	Tons	110.4	87.4
	Total reinforcement	Tons	144.3	118.0

Source: Author, 2024

Midas Civil Analytical Computations-Integral Bridges Models Figure 18 shows the 3D model of the integral

bridge model used in the MIDAS CIVIL finite element analysis. **Figure 19** to **Figure 25** show the results obtained from the finite element analysis.

Bending moment with vertical load of 89.9kN L=1m integral. The yield moment 13.4kNm>19.8*0.5kNm=9.9kNm

Source: Author, 2024

FIGURE 20

Shear force with vertical load of 89.9kN L=1m integral. Failure shear force 45.6kN~90.5*0.5kN= 45.3kN shear governs

Bending moment with vertical load of 105kN L=1.25m integral. The yield moment 18.5kNm>31*0.5kN-m=15.5kNm

Source: Author, 2024

FIGURE 22

Shear force with vertical load of 105kN L=1.25m integral. Failure shear force 53.3kN~107*0.5kN= 53.5kN shear governs **Source:** Author, 2024

Bending moment with vertical load of 124.7kN L=1.50m integral. The yield moment 26.0kN-m>41.4*0.5kNm=20.7kNm Source: Author, 2024

FIGURE 24

Shear force with vertical load of 124.7kN L=1.50m integral. Failure shear force 63.5kN~130*0.5kN= 65.0kN shear governs **Source:** Author, 2024

Foundation stress for the vertical load of 89.9kN L=1m integral Stress=0.3/ (0.05*0.05) kN/m2=120kN/m2 **Source:** Author, 2024

Midas Civil Analytical Computations-Non-Integral Bridges

Figure 26 shows the 3D model of the integral bridge model used in the MIDAS CIVIL finite

element analysis. **Figure 27** to **Figure 33** show the results obtained from the finite element analysis.

FIGURE 26 3D Model of non-integral bridge for MIDAS CIVIL finite element analysis Source: Author, 2024

Bending moment with Vertical load of 63kN L=1m Non-integral. The yield moment 13.4kN-m~25.7*0.5kNm=13kNm Source: Author, 2024

FIGURE 28

Shear force with Vertical load of 63kN L=1m Non-integral. Failure shear force 45.6kN>62*0.5kN= 31kN. Flexure governs

Bending moment with Vertical load of 70kN L=1.25m Non-integral. The yield moment 18.5kNm~36.5*0.5kNm=18.3kNm Source: Author 2024

Source: Author, 2024

FIGURE 30

Shear force with Vertical load of 70kN L=1.25m Integral. Failure shear force 53.3kN>65.0*0.5kN= 32.5kN flexure governs **Source:** Author, 2024

Bending moment with Vertical load of 84kN L=1.50m Non-integral. The yield moment 26.0kNm~52*0.5kNm=26kNm

Source: Author, 2024

FIGURE 32

Shear force with Vertical load of 84kN L=1.50m Integral. Failure shear force 63.5kN>75.7*0.5kN= 37.9kN flexure governs **Source:** Author, 2024

Foundation stress for the vertical load of 89.9kN L=1m Integral Stress=0.35/ (0.05*0.05) kN/m2=140kN/m2

Source: Author, 2024

Midas Civil Analytical Computations-Non-Integral Girder Bridge Length 25m

The modelling analysis and design of the 25m long non-integral bridge done using MIDAS CIVIL finite element analysis and presented. Drawings produced to calculate the bill of quantities and the cost. **Figure 34** shows the 3D model of the 25m long non-integral bridge with 15m abutment height. **Figure 35** to **Figure 43** show the results obtained from the finite element analysis.

FIGURE 34 Cross section of Non-integral bridge with length of bridge=25m one span Source: Author, 2024

3D Model of Non-integral bridge Length of bridge=25m one span **Source:** Author, 2024

FIGURE 36

Ultimate limit state Design Bending moment Non-integral length of the bridge 25m. Maximum design positive bending moment at mid span central beam=9656kNm **Source:** Author, 2024

Ultimate limit state Design Shear force Non-integral length of the bridge 25m. Maximum design shear force at support=1728kN

Source: Author, 2024

FIGURE 38

Ultimate limit state Design Bending Torsional moment Non-integral length of the bridge 25m. Maximum design torsional moment =249kNm **Source:** Author, 2024

Ultimate limit state Design Bending Mxx abutment walls and wing walls Non-integral length of the bridge 25m. Maximum design moment =2633kNm/m **Source:** Author, 2024

FIGURE 40

Ultimate limit state Design Bending Mxx abutment walls and wing walls Non-integral length of the bridge 25m. Maximum design moment =2633kNm/m **Source:** Author, 2024

Ultimate limit state Design Torsional moment Mxy abutment walls and wing walls Non-integral length of the bridge 25m. Maximum torsional design moment =507kNm/m **Source:** Author, 2024

FIGURE 42

Computed service load deflections of 25m span Girder Bridge using MIDAS CIVIL Finite element analysis, the moment of inertia used is the cracked moment of inertia. Calculated deflection 52mm less than the allowable deflection of about 75mm **Source:** Author, 2024

7Foundation stress at service load Non- integral bridge length 25m Foundation Stress=36.79/ (0.25*0.25) kN/m2=589kN/m2. Mesh spacing 0.25mx0.25m **Source:** Author, 2024

Midas Civil Analytical Computations-Integral Girder Bridge Length 25m

The modelling analysis and design of the 25m long integral bridge done using MIDAS CIVIL finite element analysis and presented. **Figure 44** shows the 3D model of the 25m long non-integral bridge with 15m abutment height.

Figure 44 to **Figure 51** show the results obtained from the finite element analysis.

Cost Comparisions between Integral and Non-Integral Bridges L=25m

Table 21 shows the estimated cost for 25m long non integral bridge while **Table 22** shows the estimated cost for 25m long integral bridge. The decrease of

cost by 19.2% for integral bridge as compared to non-integral bridges with the same length of 25m and height of 15m obtained .Similarly similar computation were done for 15m,20m and 22.5m spans and the results are used to prepare empirical formulas to compare cost versus length **Table 23**.

Figure 52 shows the decrease in the cost for integral bridge compared to non-integral bridges of different length. A decrease of 19.2% to 20.0% observed as per the recent market prices and the design made.

The numerical results obtained in regards to bending moments, shear forces, torsional forces show that it is in consistence with the theories of load distribution among structural members.

Cross section of Integral bridge with length of bridge=25m one span **Source:** Author, 2024

FIGURE 45 3D Model of Integral bridge Length of bridge=25m one span Source: Author, 2024

Ultimate limit state Design Bending moment Integral length of the bridge 25m. Maximum design positive bending moment at mid span central beam=3120kNm and maximum design negative moment of 6042kNm

Source: Author, 2024

FIGURE 47

Ultimate limit state Design Shear force Integral length of the bridge 25m. Maximum design shear force at support=1672kN

Ultimate limit state Design Bending Torsional moment Integral length of the bridge 25m. Maximum design torsional moment =224kNm

Source: Author, 2024

FIGURE 49

Ultimate limit state Design Bending Mxx abutment walls and wing walls Integral length of the bridge 25m

Computed service load deflections of 25m span integral Girder Bridge using MIDAS CIVIL Finite element analysis, the moment of inertia used is the cracked moment of inertia. Calculated deflection 30mm less than the allowable deflection of about 75mm **Source:** Author, 2024

FIGURE 51

Foundation stress at service load Integral bridge length 25mFoundation Stress=19.14/ (0.25*0.25) kN/m2=306kN/m2. Mesh spacing 0.25mx0.25m Source: Author, 2024

Source. Aution, 2

Decrease in the cost for integral bridge compared to non-integral bridges of different length. **Source:** Author, 2024

TABLE 21

Estimated cost of 25m long non-integral bridge with 15m abutment height

I. No.	Description of Works	Unit	Quantity	Unit Rate (USD)	Amount (USD)
1	Foundation investigations	PS	1.00	13,333.3	13,333.3
2	Clear the site and remove vegetation/trees	Ls	1.00	6,666.7	6,666.7
3	Excavation in soft materials and cart away	m3	828.00	6.7	5,520.0
4	Excavation and cart away in hard materials	m3	1,242.00	16.7	20,700.0
5	Back fill using hard materials/rock bottom fills	m3	1,012.50	20.0	20,250.0
6	Back fill using imported selected materials top fills	m3	911.25	13.3	12,150.0
7	Blinding Concrete C-15/20	m3	103.50	106.7	11,040.0
8	Class F2 Form work in Super Structure	m2	768.32	18.0	13,829.7
9	Class F2 Form work in Sub Structure	m2	2,849.13	18.0	51,284.3
10	High yield strength Fy=500MPa reinforcement steel in Super Structure	Tons	33.90	1,833.3	62,157.9
11	High yield strength Fy=500MPa reinforcement steel in Sub-Structure	Tons	110.41	1,833.3	202,417.6
12	Concrete C-35/45 in Super Structures	m3	230.48	198.7	45,788.1
13	Concrete C-35/45 in Sub Structures	m3	1,226.59	192.0	235,505.3
14	Elastomeric Bearing 500x500x70mm	Pcs	8.00	1,166.7	9,333.3
15	Concrete bridge railing using reinforced concrete crush barriers C-35/45	m	70.00	133.3	9,333.3

I. No.	Description of Works	Unit	Quantity	Unit Rate (USD)	Amount (USD)
16	Expansion joint including 20mm filler	m	22.00	166.7	3,666.7
17	Expansion Joint Sealant	m	22.00	33.3	733.3
18	Rock fill in foundation	m3	600.00	20.0	12,000.0
19	Weep Holes	Lm	100.00	12.0	1,200.0
20	Crushed stone in drainage strip	m3	60.00	26.7	1,600.0
21	Water proof in deck and foundations	Ls	1.00	8,000.0	8,000.0
22	Design and supervision	Ls	1.00	89,581.2	89,581.2
23	Contingencies 5%	Ls	1.00	40,804.5	40,804.5
	Total cost in USD	876,895.3			
	Cost of the bridge per m length USD/m				35,075.8

Source: Author, 2024

TABLE 22

Estimated cost of 25m long integral bridge with 15m abutment height

I. No.	Description of Works	Unit	Quantity	Unit Rate (USD)	Amount (USD)
1	Foundation investigations	PS	1.00	13,333.3	13,333.3
2	Clear the site and remove vegetation/trees	Ls	1.00	6,666.7	6,666.7
3	Excavation in soft materials and cart away	m3	645.8	6.7	4,305.6
4	Excavation and cart away in hard materials	m3	968.8	16.7	16,146.0
5	Back fill using hard materials/rock bottom fills	m3	911.3	20.0	18,225.0
6	Back fill using imported selected materials top fills	m3	820.1	13.3	10,935.0
7	Blinding Concrete C-15/20	m3	69.0	106.7	7,360.0
8	Class F2 Form work in Super Structure	m2	674.9	18.0	12,148.8
9	Class F2 Form work in Sub Structure	m2	2,291.1	18.0	41,240.1
10	High yield strength Fy=500MPa reinforcement steel in Super Structure	Tons	30.6	1,833.3	56,180.5
11	High yield strength Fy=500MPa reinforcement steel in Sub-Structure	Tons	87.4	1,833.3	160,240.8
12	Concrete C-35/45 in Super Structures	m3	202.7	198.7	40,266.7
13	Concrete C-35/45 in Sub Structures	m3	962.5	192.0	184,798.6
14	Elastomeric Bearing 500x500x70mm	Pcs	-	1,166.7	-
15	Concrete bridge railing using reinforced concrete crush barriers C-35/45	m	70.0	133.3	9,333.3
16	Expansion joint including 20mm filler	m	-	-	-
17	Expansion Joint Sealant	m	-	-	-
18	Rock fill in foundation	m3	600.0	20.0	12,000.0
19	Weep Holes	Lm	100.0	12.0	1,200.0
20	Crushed stone in drainage strip	m3	40.0	26.7	1,066.7
21	Water proof in deck and foundations	Ls	1.0	8,000.0	8,000.0
22	Design and supervision	Ls	1.0	72,413.7	72,413.7
23	Contingencies 5%	Ls	1.0	33,793.0	33,793.0
	Total cost in USD	n			709,653.8
	Cost of the bridge per m length USD/m				28,386.2

Estimated cost of 25m long integral bridge and non-integral bridges with 15m abutment height

I. No.	Length of the bridge [m]	Height of the Abut- ment [m]	Cost of Non-Inte- gral bridge [USD]	Cost of In- tegral bridge [USD]	Cost saving/ decrease in cost [USD]	Percentage decrease in cost from non-integral to integral
1	15.0	15	731,028.11	585,151.49	145,876.62	20.0 %
2	20.0	15	827,970.45	667,832.45	160,138.00	19.3 %
3	22.5	15	852,432.86	688,743.12	163,689.74	19.2 %
4	25.0	15	876,895.28	709,653.78	167,241.49	19.1 %

Source: Author, 2024

CONCLUSION

Based on the experimental and analytical investigations, the following conclusions can be drawn:

Experimental results show that the increase of ultimate failure loads by 19.4% to 34.4% for integral bridge models as compared to nonintegral bridges with the same reinforcement and sectional properties. The analytical computations supported by the experimental investigations reveals the decrease in cost by 19.1% to 20.0% for integral bridge as compared to non-integral bridges with the same length and height. Comparison ultimate loads at failure showed that the calculated value had good agreement with the test result, indicating the proposed empirical formulas and MIDAS CIVIL calculation method are reliable and accurate. Therefore, it can be applied to design integral bridges. From the above, the cost saving is significant for a developing country like Kenya with huge fiscal deficit, incorporating integral bridge design and construction in the infrastructure projects will relief the stress in project spendings, thus in the long run could reduce the deficit significantly (Macharia et al., 2022 and Macharia et al., 2023).

RECOMMENDATIONS

The study recommends;

- 1. Incorporate integral bridge design and construction in the infrastructure projects in order to relief the stress in project spendings,thus reducing the deficit significantly.
- 2. That planners and engineers to adopt integral design and construction through a review of

road design manual that dictate preference of integral design over non-integral concept.

3. That design and construction of integral bridges of up to 100m long in tropical climate like Kenya to save cost both in construction and maintenance.

It should be pointed out that the aforementioned conclusions are drawn based on limited test results. Therefore, more studies are needed to verify the repeatability of the test results and obtain conclusive evidences.

CITED REFERENCES

Burke, J. (2009). *Integral and semi integral bridges.* 2121 State Avenue, Ames, Iow50014-8300, USA : John Wiley & Sons, Ltd. Publications.

Lehane, B. M. Keogh, D. L. and Obrien, E. J. (1999). Simplified model for restraining effects of backfill soil on integral bridges. Retrieved January 2, 2024 from https://www.researchgate.net/publication/240910493

Mellese, Yimam, Osano, S. N. and Abuodha, S. (2023). Using particle packing technology and admixtures for sustainable and economical concrete mix design. *International Journal of Scientific and Research Publications*. 13(2), 143 – 173. DOI: 10.29322/IJSRP.13.02.2023.p13417, http://dx.doi.org/10.29322/IJSRP.13.02.2023. p13417

Muttoni A., Dumont A. G., Burdet O., Savvilotidou M., Einpaul J., and Nguyen M. L. (2013). Experimental verification of integral bridge abutments, Rapport OFROU, Switzerland: Structural Concrete Laboratory of EPFL.

Paul G. Macharia; Osano Simpson Nyambane and Sixtus Kinyua Mwea (2023). Maintenance of roads implemented under the roads 2000: Strategy in Central Kenya. *East African Journal of Engineering (EAJE)*, 6(1), 2023, 66-79. DOI: https://doi.org/10.37284/2707-5397

Paul G. Macharia, Osano Simpson Nyambane and Sixtus Kinyua Mwea (2022). Performance of roads implemented under the roads 2000. Strategy in Central Kenya. *East African Journal of Engineering (EAJE)*, 5(1), 163-173 DOI: https://doi.org/10.37284/eaje.5.1.883

Peter Collin, Milan Veljkovic Hans and Pétursson (2006). *International workshop on the bridges with integral abutments.* Sweden: Luleå University of Technology Lulea

Sami Arsoy; Richard Barker; J. Michael, Duncan (1999). *The Behavior of integral abutment bridges*. Virginia: Virginia Transportation Research Council.